Perceptual Similarity for Measuring Decision-Making Style and Policy Diversity in Games
- URL: http://arxiv.org/abs/2408.06051v2
- Date: Fri, 30 Aug 2024 03:19:26 GMT
- Title: Perceptual Similarity for Measuring Decision-Making Style and Policy Diversity in Games
- Authors: Chiu-Chou Lin, Wei-Chen Chiu, I-Chen Wu,
- Abstract summary: Defining and measuring decision-making styles, also known as playstyles, is crucial in gaming.
We introduce three enhancements to increase accuracy: multiscale analysis with varied state psychology, a perceptual kernel rooted in granularity, and the utilization of the intersection-over-union method for efficient evaluation.
Our findings improve the measurement of end-to-end game analysis and the evolution of artificial intelligence for diverse playstyles.
- Score: 28.289135305943056
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Defining and measuring decision-making styles, also known as playstyles, is crucial in gaming, where these styles reflect a broad spectrum of individuality and diversity. However, finding a universally applicable measure for these styles poses a challenge. Building on Playstyle Distance, the first unsupervised metric to measure playstyle similarity based on game screens and raw actions, we introduce three enhancements to increase accuracy: multiscale analysis with varied state granularity, a perceptual kernel rooted in psychology, and the utilization of the intersection-over-union method for efficient evaluation. These innovations not only advance measurement precision but also offer insights into human cognition of similarity. Across two racing games and seven Atari games, our techniques significantly improve the precision of zero-shot playstyle classification, achieving an accuracy exceeding 90 percent with fewer than 512 observation-action pairs, which is less than half an episode of these games. Furthermore, our experiments with 2048 and Go demonstrate the potential of discrete playstyle measures in puzzle and board games. We also develop an algorithm for assessing decision-making diversity using these measures. Our findings improve the measurement of end-to-end game analysis and the evolution of artificial intelligence for diverse playstyles.
Related papers
- Measuring Diversity of Game Scenarios [15.100151112002235]
We aim to bridge the current gaps in literature and practice, offering insights into effective strategies for measuring and integrating diversity in game scenarios.
This survey not only charts a path for future research in diverse game scenarios but also serves as a handbook for industry practitioners seeking to leverage diversity as a key component of game design and development.
arXiv Detail & Related papers (2024-04-15T07:59:52Z) - Finding mixed-strategy equilibria of continuous-action games without
gradients using randomized policy networks [83.28949556413717]
We study the problem of computing an approximate Nash equilibrium of continuous-action game without access to gradients.
We model players' strategies using artificial neural networks.
This paper is the first to solve general continuous-action games with unrestricted mixed strategies and without any gradient information.
arXiv Detail & Related papers (2022-11-29T05:16:41Z) - Detecting Individual Decision-Making Style: Exploring Behavioral
Stylometry in Chess [4.793072503820555]
We present a transformer-based approach to behavioral stylometry in the context of chess.
Our method operates in a few-shot classification framework, and can correctly identify a player from among thousands of candidate players.
We consider more broadly what our resulting embeddings reveal about human style in chess, as well as the potential ethical implications.
arXiv Detail & Related papers (2022-08-02T11:18:16Z) - Collusion Detection in Team-Based Multiplayer Games [57.153233321515984]
We propose a system that detects colluding behaviors in team-based multiplayer games.
The proposed method analyzes the players' social relationships paired with their in-game behavioral patterns.
We then automate the detection using Isolation Forest, an unsupervised learning technique specialized in highlighting outliers.
arXiv Detail & Related papers (2022-03-10T02:37:39Z) - Towards Objective Metrics for Procedurally Generated Video Game Levels [2.320417845168326]
We introduce two simulation-based evaluation metrics to measure the diversity and difficulty of generated levels.
We demonstrate that our diversity metric is more robust to changes in level size and representation than current methods.
The difficulty metric shows promise, as it correlates with existing estimates of difficulty in one of the tested domains, but it does face some challenges in the other domain.
arXiv Detail & Related papers (2022-01-25T14:13:50Z) - Pick Your Battles: Interaction Graphs as Population-Level Objectives for
Strategic Diversity [49.68758494467258]
We study how to construct diverse populations of agents by carefully structuring how individuals within a population interact.
Our approach is based on interaction graphs, which control the flow of information between agents during training.
We provide evidence for the importance of diversity in multi-agent training and analyse the effect of applying different interaction graphs on the training trajectories, diversity and performance of populations in a range of games.
arXiv Detail & Related papers (2021-10-08T11:29:52Z) - Policy Fusion for Adaptive and Customizable Reinforcement Learning
Agents [137.86426963572214]
We show how to combine distinct behavioral policies to obtain a meaningful "fusion" policy.
We propose four different policy fusion methods for combining pre-trained policies.
We provide several practical examples and use-cases for how these methods are indeed useful for video game production and designers.
arXiv Detail & Related papers (2021-04-21T16:08:44Z) - Generating Diverse and Competitive Play-Styles for Strategy Games [58.896302717975445]
We propose Portfolio Monte Carlo Tree Search with Progressive Unpruning for playing a turn-based strategy game (Tribes)
We show how it can be parameterized so a quality-diversity algorithm (MAP-Elites) is used to achieve different play-styles while keeping a competitive level of play.
Our results show that this algorithm is capable of achieving these goals even for an extensive collection of game levels beyond those used for training.
arXiv Detail & Related papers (2021-04-17T20:33:24Z) - Modelling Behavioural Diversity for Learning in Open-Ended Games [15.978932309579013]
We offer a geometric interpretation of behavioural diversity in games.
We introduce a novel diversity metric based on emphdeterminantal point processes (DPP)
We prove the uniqueness of the diverse best response and the convergence of our algorithms on two-player games.
arXiv Detail & Related papers (2021-03-14T13:42:39Z) - Multi-Modal Aesthetic Assessment for MObile Gaming Image [30.962059154484912]
The proposed model outperforms state-of-the-art aesthetic metrics significantly in predicting four gaming aesthetic dimensions.
Our inclination is to seek and learn the correlations between different aesthetic relevant dimensions to further boost the generalization performance.
arXiv Detail & Related papers (2021-01-27T21:48:31Z) - On the confidence of stereo matching in a deep-learning era: a
quantitative evaluation [124.09613797008099]
We review more than ten years of developments in the field of confidence estimation for stereo matching.
We study the different behaviors of each measure when applied to a pool of different stereo algorithms and, for the first time in literature, when paired with a state-of-the-art deep stereo network.
arXiv Detail & Related papers (2021-01-02T11:40:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.