Quantum Algorithms for Compositional Text Processing
- URL: http://arxiv.org/abs/2408.06061v1
- Date: Mon, 12 Aug 2024 11:21:40 GMT
- Title: Quantum Algorithms for Compositional Text Processing
- Authors: Tuomas Laakkonen, Konstantinos Meichanetzidis, Bob Coecke,
- Abstract summary: We focus on the recently proposed DisCoCirc framework for natural language, and propose a quantum adaptation, QDisCoCirc.
This is motivated by a compositional approach to rendering AI interpretable.
For the model-native primitive operation of text similarity, we derive quantum algorithms for fault-tolerant quantum computers.
- Score: 1.3654846342364308
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum computing and AI have found a fruitful intersection in the field of natural language processing. We focus on the recently proposed DisCoCirc framework for natural language, and propose a quantum adaptation, QDisCoCirc. This is motivated by a compositional approach to rendering AI interpretable: the behavior of the whole can be understood in terms of the behavior of parts, and the way they are put together. For the model-native primitive operation of text similarity, we derive quantum algorithms for fault-tolerant quantum computers to solve the task of question-answering within QDisCoCirc, and show that this is BQP-hard; note that we do not consider the complexity of question-answering in other natural language processing models. Assuming widely-held conjectures, implementing the proposed model classically would require super-polynomial resources. Therefore, it could provide a meaningful demonstration of the power of practical quantum processors. The model construction builds on previous work in compositional quantum natural language processing. Word embeddings are encoded as parameterized quantum circuits, and compositionality here means that the quantum circuits compose according to the linguistic structure of the text. We outline a method for evaluating the model on near-term quantum processors, and elsewhere we report on a recent implementation of this on quantum hardware. In addition, we adapt a quantum algorithm for the closest vector problem to obtain a Grover-like speedup in the fault-tolerant regime for our model. This provides an unconditional quadratic speedup over any classical algorithm in certain circumstances, which we will verify empirically in future work.
Related papers
- A Few Shot Learning Scheme for Quantum Natural Language Processing [0.0]
We develop a framework to implement Few Shot Learning for Quantum Natural Language Processing.
This framework is put to the test to explore its behaviour and its power in extracting useful work from each call to a quantum system.
arXiv Detail & Related papers (2024-09-18T16:24:51Z) - Scalable and interpretable quantum natural language processing: an implementation on trapped ions [1.0037949839020768]
We present the first implementation of text-level quantum natural language processing.
We focus on the QDisCoCirc model, which is underpinned by a compositional approach to rendering AI interpretable.
We demonstrate an experiment on Quantinuum's H1-1 trapped-ion quantum processor.
arXiv Detail & Related papers (2024-09-13T12:36:14Z) - Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
Given a quantum circuit containing d tunable RZ gates and G-d Clifford gates, can a learner perform purely classical inference to efficiently predict its linear properties?
We prove that the sample complexity scaling linearly in d is necessary and sufficient to achieve a small prediction error, while the corresponding computational complexity may scale exponentially in d.
We devise a kernel-based learning model capable of trading off prediction error and computational complexity, transitioning from exponential to scaling in many practical settings.
arXiv Detail & Related papers (2024-08-22T08:21:28Z) - Quantum Subroutine for Variance Estimation: Algorithmic Design and Applications [80.04533958880862]
Quantum computing sets the foundation for new ways of designing algorithms.
New challenges arise concerning which field quantum speedup can be achieved.
Looking for the design of quantum subroutines that are more efficient than their classical counterpart poses solid pillars to new powerful quantum algorithms.
arXiv Detail & Related papers (2024-02-26T09:32:07Z) - Quantum algorithms: A survey of applications and end-to-end complexities [90.05272647148196]
The anticipated applications of quantum computers span across science and industry.
We present a survey of several potential application areas of quantum algorithms.
We outline the challenges and opportunities in each area in an "end-to-end" fashion.
arXiv Detail & Related papers (2023-10-04T17:53:55Z) - QNEAT: Natural Evolution of Variational Quantum Circuit Architecture [95.29334926638462]
We focus on variational quantum circuits (VQC), which emerged as the most promising candidates for the quantum counterpart of neural networks.
Although showing promising results, VQCs can be hard to train because of different issues, e.g., barren plateau, periodicity of the weights, or choice of architecture.
We propose a gradient-free algorithm inspired by natural evolution to optimize both the weights and the architecture of the VQC.
arXiv Detail & Related papers (2023-04-14T08:03:20Z) - Quantum Machine Learning: from physics to software engineering [58.720142291102135]
We show how classical machine learning approach can help improve the facilities of quantum computers.
We discuss how quantum algorithms and quantum computers may be useful for solving classical machine learning tasks.
arXiv Detail & Related papers (2023-01-04T23:37:45Z) - Quantum communication complexity of linear regression [0.05076419064097732]
We show that quantum computers have provable and exponential speedups in terms of communication for some fundamental linear algebra problems.
We propose an efficient quantum protocol for quantum singular value transformation.
arXiv Detail & Related papers (2022-10-04T13:27:01Z) - Entanglement and coherence in Bernstein-Vazirani algorithm [58.720142291102135]
Bernstein-Vazirani algorithm allows one to determine a bit string encoded into an oracle.
We analyze in detail the quantum resources in the Bernstein-Vazirani algorithm.
We show that in the absence of entanglement, the performance of the algorithm is directly related to the amount of quantum coherence in the initial state.
arXiv Detail & Related papers (2022-05-26T20:32:36Z) - Qunity: A Unified Language for Quantum and Classical Computing (Extended
Version) [3.5348690973777006]
We introduce Qunity, a new quantum programming language.
Qunity treats quantum computing as a natural generalization of classical computing.
We show how Qunity can cleanly express several quantum algorithms.
arXiv Detail & Related papers (2022-04-26T15:34:22Z) - Foundations for Near-Term Quantum Natural Language Processing [0.17205106391379021]
We provide conceptual and mathematical foundations for near-term quantum natural language processing (QNLP)
We recall how the quantum model for natural language that we employ canonically combines linguistic meanings with rich linguistic structure.
We provide references for supporting empirical evidence and formal statements concerning mathematical generality.
arXiv Detail & Related papers (2020-12-07T14:49:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.