A more generalized two-qubit symmetric quantum joint measurement
- URL: http://arxiv.org/abs/2408.06179v1
- Date: Mon, 12 Aug 2024 14:24:48 GMT
- Title: A more generalized two-qubit symmetric quantum joint measurement
- Authors: Ying-Qiu He, Dong Ding, Ting Gao, Zan-Jia Li, Feng-Li Yan,
- Abstract summary: A novel quantum joint measurement named elegant joint measurement (EJM) has been proposed, where the reduced states of the EJM basis have tetrahedral symmetry.
We provide the quantum circuits for preparing and detecting these basis states.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A standard two-qubit joint measurement is the well-known Bell state measurement (BSM), in which each reduced state (traced out one qubit) is the completely mixed state. Recently, a novel quantum joint measurement named elegant joint measurement (EJM) has been proposed, where the reduced states of the EJM basis have tetrahedral symmetry. In this work, we first suggest a five-parameter entangled state and reveal its inherent symmetry. Based on this, we define a more generalized EJM parameterized by $z$, $\varphi$ and $\theta$, and provide the quantum circuits for preparing and detecting these basis states. There are three main results: (i) the previous single-parameter EJM can be directly obtained by specifying the parameters $z$ and $\varphi$; (ii) the initial unit vectors related to the four vertices of the regular tetrahedron are not limited to the original choice and not all the unit vectors in cylindrical coordinates are suitable for forming the EJM basis; and (iii) the reduced states of the present EJM basis can always form two mirrorimage tetrahedrons, robustly preserving its elegant properties. We focus on figuring out what kind of states the EJM basis belongs to and providing a method for constructing the more generalized three-parameter EJM, which may contribute to the multi-setting measurement and the potential applications for quantum information processing.
Related papers
- Symmetric quantum joint measurements on multiple qubits [0.0]
We describe a method for constructing a symmetric joint measurement basis for three qubits.
We demonstrate the expected tetrahedral symmetry of the current measurement basis.
This architecture enables us to generalize the two-qubit symmetric joint measurement to an $n$-qubit version.
arXiv Detail & Related papers (2025-03-12T02:01:46Z) - Quantum error correction-inspired multiparameter quantum metrology [0.029541734875307393]
We present a strategy for obtaining optimal probe states and measurement schemes in a class of noiseless estimation problems with symmetry among the generators.
The key to the framework is the introduction of a set of quantum metrology conditions, analogous to the quantum error correction conditions of Knill and Laflamme.
We show that tetrahedral symmetry and, with fine-tuning, $S_3$ symmetry, are minimal symmetry groups providing optimal probe states for SU(2) estimation.
arXiv Detail & Related papers (2024-09-25T00:06:12Z) - Classification of joint quantum measurements based on entanglement cost of localization [42.72938925647165]
We propose a systematic classification of joint measurements based on entanglement cost.
We show how to numerically explore higher levels and construct generalizations to higher dimensions and multipartite settings.
arXiv Detail & Related papers (2024-08-01T18:00:01Z) - Solving the homogeneous Bethe-Salpeter equation with a quantum annealer [34.173566188833156]
The homogeneous Bethe-Salpeter equation (hBSE) was solved for the first time by using a D-Wave quantum annealer.
A broad numerical analysis of the proposed algorithms was carried out using both the proprietary simulated-anneaing package and the D-Wave Advantage 4.1 system.
arXiv Detail & Related papers (2024-06-26T18:12:53Z) - Symmetry enforced entanglement in maximally mixed states [3.5602863178766966]
Entanglement in quantum many-body systems is typically fragile to interactions with the environment.
We analyze the entanglement and correlations of the maximally mixed state in the invariant sector.
For all Abelian symmetries, the MMIS is separable, and for all non-Abelian symmetries, the MMIS is entangled.
arXiv Detail & Related papers (2024-06-12T18:00:00Z) - Exploring Supersymmetry: Interchangeability Between Jaynes-Cummings and Anti-Jaynes-Cummings Models [39.58317527488534]
The supersymmetric connection that exists between the Jaynes-Cummings (JC) and anti-Jaynes Cummings (AJC) models in quantum optics is unraveled.
A new method is proposed to obtain the temporal evolution of observables in the AJC model using supersymmetric techniques.
arXiv Detail & Related papers (2024-04-18T18:00:34Z) - Geometry of degenerate quantum states, configurations of $m$-planes and invariants on complex Grassmannians [55.2480439325792]
We show how to reduce the geometry of degenerate states to the non-abelian connection $A$.
We find independent invariants associated with each triple of subspaces.
Some of them generalize the Berry-Pancharatnam phase, and some do not have analogues for 1-dimensional subspaces.
arXiv Detail & Related papers (2024-04-04T06:39:28Z) - How much symmetry do symmetric measurements need for efficient operational applications? [0.0]
For informationally complete sets, we propose construction methods from orthonormal Hermitian operator bases.
Some of the symmetry properties, lost in the process of generalization, can be recovered without fixing the same number of elements for all POVMs.
arXiv Detail & Related papers (2024-04-02T15:23:08Z) - Symmetry-enriched topological order from partially gauging
symmetry-protected topologically ordered states assisted by measurements [1.2809525640002364]
It is known that for a given symmetry group $G$, the 2D SPT phase protected by $G$ is dual to the 2D topological phase exemplified by the twisted quantum double model $Domega(G)$ via gauging the global symmetry $G$.
Here, we review the general approach to gauging a $G$-SPT starting from a fixed-point ground-state wave function and applying a $N$-step gauging procedure.
We provide an in-depth analysis of the intermediate states emerging during the N-step gauging and provide tools to measure and identify the emerging symmetry-
arXiv Detail & Related papers (2023-05-16T18:40:56Z) - Regression of high dimensional angular momentum states of light [47.187609203210705]
We present an approach to reconstruct input OAM states from measurements of the spatial intensity distributions they produce.
We showcase our approach in a real photonic setup, generating up-to-four-dimensional OAM states through a quantum walk dynamics.
arXiv Detail & Related papers (2022-06-20T16:16:48Z) - Noise-resilient Edge Modes on a Chain of Superconducting Qubits [103.93329374521808]
Inherent symmetry of a quantum system may protect its otherwise fragile states.
We implement the one-dimensional kicked Ising model which exhibits non-local Majorana edge modes (MEMs) with $mathbbZ$ parity symmetry.
MEMs are found to be resilient against certain symmetry-breaking noise owing to a prethermalization mechanism.
arXiv Detail & Related papers (2022-04-24T22:34:15Z) - Three-fold way of entanglement dynamics in monitored quantum circuits [68.8204255655161]
We investigate the measurement-induced entanglement transition in quantum circuits built upon Dyson's three circular ensembles.
We obtain insights into the interplay between the local entanglement generation by the gates and the entanglement reduction by the measurements.
arXiv Detail & Related papers (2022-01-28T17:21:15Z) - Role of mixed permutation symmetry sectors in the thermodynamic limit of
critical three-level Lipkin-Meshkov-Glick atom models [0.0]
Mixed Symmetry Quantum Phase Transition (MSQPT)
Four distinct quantum phases in the $lambda$-$mu$ plane coexist at a quadruple point.
The restoration of this discrete symmetry leads to the formation of four-component Schr"odinger cat states.
arXiv Detail & Related papers (2021-02-15T20:15:55Z) - State preparation and measurement in a quantum simulation of the O(3)
sigma model [65.01359242860215]
We show that fixed points of the non-linear O(3) sigma model can be reproduced near a quantum phase transition of a spin model with just two qubits per lattice site.
We apply Trotter methods to obtain results for the complexity of adiabatic ground state preparation in both the weak-coupling and quantum-critical regimes.
We present and analyze a quantum algorithm based on non-unitary randomized simulation methods.
arXiv Detail & Related papers (2020-06-28T23:44:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.