論文の概要: Mutual Reasoning Makes Smaller LLMs Stronger Problem-Solvers
- arxiv url: http://arxiv.org/abs/2408.06195v1
- Date: Mon, 12 Aug 2024 14:42:13 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-13 13:03:23.820624
- Title: Mutual Reasoning Makes Smaller LLMs Stronger Problem-Solvers
- Title(参考訳): より小さなLSMをより強力な問題ソーバにする相互推論
- Authors: Zhenting Qi, Mingyuan Ma, Jiahang Xu, Li Lyna Zhang, Fan Yang, Mao Yang,
- Abstract要約: rStarは、小さな言語モデルのための自己再生相互推論アプローチである。
微調整や優れたモデルなしで推論能力を大幅に改善する。
GSM8K、GSM-Hard、MATH、SVAMP、StrategyQAなどの様々な推論問題を効果的に解決できる。
- 参考スコア(独自算出の注目度): 8.610710829143889
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper introduces rStar, a self-play mutual reasoning approach that significantly improves reasoning capabilities of small language models (SLMs) without fine-tuning or superior models. rStar decouples reasoning into a self-play mutual generation-discrimination process. First, a target SLM augments the Monte Carlo Tree Search (MCTS) with a rich set of human-like reasoning actions to construct higher quality reasoning trajectories. Next, another SLM, with capabilities similar to the target SLM, acts as a discriminator to verify each trajectory generated by the target SLM. The mutually agreed reasoning trajectories are considered mutual consistent, thus are more likely to be correct. Extensive experiments across five SLMs demonstrate rStar can effectively solve diverse reasoning problems, including GSM8K, GSM-Hard, MATH, SVAMP, and StrategyQA. Remarkably, rStar boosts GSM8K accuracy from 12.51% to 63.91% for LLaMA2-7B, from 36.46% to 81.88% for Mistral-7B, from 74.53% to 91.13% for LLaMA3-8B-Instruct. Code will be available at https://github.com/zhentingqi/rStar.
- Abstract(参考訳): 本稿では,小型言語モデル(SLM)の推論能力を大幅に向上する自己演奏型相互推論手法であるrStarを紹介する。
rStarは推論を自己再生的相互世代識別プロセスに分離する。
第一に、ターゲットSLMはモンテカルロ木探索(MCTS)を強化し、より高品質な推論トラジェクトリを構築するために、人間のような推論アクションを多用する。
次に、目標SLMに類似した機能を持つ別のSLMが、目標SLMが生成した各軌道を検証する判別器として機能する。
相互に合意された推論軌跡は相互に一致していると考えられるため、より正確である可能性が高い。
5つのSLMにわたる大規模な実験により、rStarはGSM8K、GSM-Hard、MATH、SVAMP、StrategyQAを含む様々な推論問題を効果的に解決できることを示した。
rStarは、LLaMA2-7BではGSM8Kの精度を12.51%から63.91%に、Mistral-7Bでは36.46%から81.88%に、LLaMA3-8Bでは74.53%から91.13%に向上させた。
コードはhttps://github.com/zhentingqi/rStar.comから入手できる。
関連論文リスト
- Towards Reasoning Ability of Small Language Models [3.732224317444325]
我々は,小言語モデル (SLM) が競争力のある推論性能を実現できることを示す。
14の推論ベンチマークで6つのモデルファミリーから72のSLMを体系的に調査し、ベンチマークし、分析した。
我々の発見は、スケーリングが強力な推論を達成する唯一の方法である、という仮定に挑戦する。
論文 参考訳(メタデータ) (2025-02-17T08:59:16Z) - rStar-Math: Small LLMs Can Master Math Reasoning with Self-Evolved Deep Thinking [15.38166914134102]
本稿では,小型言語モデル (SLM) が OpenAI o1 の算術的推論能力に匹敵するか,超越するかを示すために rStar-Math を提案する。
我々はモンテカルロ木探索(MCTS)を通して「深層思考」を実践し,SLMに基づくプロセス報酬モデルによるテスト時間探索を行う。
論文 参考訳(メタデータ) (2025-01-08T14:12:57Z) - RAG-Star: Enhancing Deliberative Reasoning with Retrieval Augmented Verification and Refinement [85.08223786819532]
既存の大規模言語モデル(LLM)は、例外的な問題解決能力を示すが、複雑な推論タスクに苦労する可能性がある。
検索情報を統合した新しいRAG手法である textbfRAG-Star を提案する。
Llama-3.1-8B-Instruct と GPT-4o を併用した実験により,RAG-Star は従来のRAG と推理法を著しく上回っていることが示された。
論文 参考訳(メタデータ) (2024-12-17T13:05:36Z) - MALT: Improving Reasoning with Multi-Agent LLM Training [64.13803241218886]
推論問題に対するマルチエージェントLLMトレーニング(MALT)に向けた第一歩を提示する。
提案手法では,ヘテロジニアスLSMが割り当てられた逐次的マルチエージェント構成を用いる。
我々は,MATH,GSM8k,CQAにまたがるアプローチを評価し,MALT on Llama 3.1 8Bモデルでそれぞれ14.14%,7.12%,9.40%の相対的な改善を実現した。
論文 参考訳(メタデータ) (2024-12-02T19:30:36Z) - Language Models are Hidden Reasoners: Unlocking Latent Reasoning Capabilities via Self-Rewarding [74.31981011985681]
大きな言語モデル(LLM)は印象的な機能を示しているが、それでも複数のステップを必要とする複雑な推論タスクに苦戦している。
LaTRO(LaTent Reasoning Optimization)は、潜在分布からのサンプリングとして推論を定式化するためのフレームワークである。
複数のモデルアーキテクチャを用いて、GSM8KおよびARC-Challengeデータセットの実験を通してLaTROを検証する。
論文 参考訳(メタデータ) (2024-11-06T22:02:30Z) - GIVE: Structured Reasoning of Large Language Models with Knowledge Graph Inspired Veracity Extrapolation [108.2008975785364]
Graph Inspired Veracity Extrapolation (GIVE)は、パラメトリックメモリと非パラメトリックメモリを融合して、最小の外部入力で正確な推論を改善する新しい推論手法である。
GIVE は LLM エージェントをガイドして,最も関連する専門家データ (observe) を選択し,クエリ固有の発散思考 (reflect) に従事し,その情報を合成して最終的な出力 (speak) を生成する。
論文 参考訳(メタデータ) (2024-10-11T03:05:06Z) - WALL-E: World Alignment by Rule Learning Improves World Model-based LLM Agents [55.64361927346957]
大規模言語モデル(LLM)による規則の勾配なし学習のためのニューロシンボリックアプローチを提案する。
我々のLLMエージェントWALL-Eはモデル予測制御(MPC)上に構築されている
MinecraftとALFWorldにおけるオープンワールドの課題について、WALL-Eは既存の方法よりも高い成功率を達成する。
論文 参考訳(メタデータ) (2024-10-09T23:37:36Z) - Self-Explore: Enhancing Mathematical Reasoning in Language Models with Fine-grained Rewards [42.065997425172974]
大規模言語モデル(LLM)の推論能力向上には,大量の論理学(CoTファインチューニング)の訓練が有効である。
本稿では,LLMが論理学における最初の間違ったステップを探索し,より詳細な報奨などの信号を用いてさらなる改善を行うセルフエクスロアを提案する。
GSM8KとMATHテストセットでは、教師付き微調整(SFT)と比較して平均11.57%と2.89%の改善を達成した。
論文 参考訳(メタデータ) (2024-04-16T07:30:11Z) - How Far Are We on the Decision-Making of LLMs? Evaluating LLMs' Gaming Ability in Multi-Agent Environments [83.78240828340681]
GAMA($gamma$)-Benchは、マルチエージェント環境における大規模言語モデルのゲーム能力を評価するための新しいフレームワークである。
$gamma$-Benchは8つの古典ゲーム理論シナリオと、LSMの性能を評価するために特別に設計された動的スコアリングスキームを含んでいる。
以上の結果から, GPT-3.5は強い強靭性を示すが, 一般化性は限定的であり, Chain-of-Thoughtのような手法で拡張可能であることが示唆された。
論文 参考訳(メタデータ) (2024-03-18T14:04:47Z) - Large Language Models Can Self-Improve [34.78624270280148]
我々は、事前学習したLLMを用いて、ラベルなし質問に対する「高信頼」理性強化された回答を生成する。
提案手法は, 根拠となる真理ラベルを使わずに, 最先端のパフォーマンスを実現することができることを示す。
論文 参考訳(メタデータ) (2022-10-20T21:53:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。