論文の概要: Strategy Game-Playing with Size-Constrained State Abstraction
- arxiv url: http://arxiv.org/abs/2408.06202v1
- Date: Mon, 12 Aug 2024 14:50:18 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-13 12:53:36.224657
- Title: Strategy Game-Playing with Size-Constrained State Abstraction
- Title(参考訳): サイズ制約のある状態抽象化による戦略ゲームプレイング
- Authors: Linjie Xu, Diego Perez-Liebana, Alexander Dockhorn,
- Abstract要約: 戦略ゲームは人工知能(AI)にとって難しい問題である
主な課題の1つは、ゲームコンポーネントの多様さによる巨大な検索スペースである。
状態抽象化は、検索ベースのゲームAIに適用され、大幅なパフォーマンス向上をもたらした。
- 参考スコア(独自算出の注目度): 44.99833362998488
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Playing strategy games is a challenging problem for artificial intelligence (AI). One of the major challenges is the large search space due to a diverse set of game components. In recent works, state abstraction has been applied to search-based game AI and has brought significant performance improvements. State abstraction techniques rely on reducing the search space, e.g., by aggregating similar states. However, the application of these abstractions is hindered because the quality of an abstraction is difficult to evaluate. Previous works hence abandon the abstraction in the middle of the search to not bias the search to a local optimum. This mechanism introduces a hyper-parameter to decide the time to abandon the current state abstraction. In this work, we propose a size-constrained state abstraction (SCSA), an approach that limits the maximum number of nodes being grouped together. We found that with SCSA, the abstraction is not required to be abandoned. Our empirical results on $3$ strategy games show that the SCSA agent outperforms the previous methods and yields robust performance over different games. Codes are open-sourced at \url{https://github.com/GAIGResearch/Stratega}.
- Abstract(参考訳): 戦略ゲームは人工知能(AI)にとって難しい問題である。
主な課題の1つは、ゲームコンポーネントの多様さによる巨大な検索スペースである。
最近の研究では、状態抽象化が検索ベースのゲームAIに適用され、パフォーマンスが大幅に向上した。
状態抽象化技術は、類似した状態を集約することで、例えば検索スペースを減らすことに依存している。
しかし、これらの抽象化の応用は、抽象の質を評価するのが難しいため妨げられている。
それまでの作業では、検索の途中で抽象化を放棄して、検索を局所的な最適化に偏らないようにしていた。
このメカニズムは、現在の状態抽象化を捨てる時間を決定するためのハイパーパラメータを導入します。
本研究では,グループ化されたノードの最大数を制限したサイズ制約状態抽象化(SCSA)を提案する。
SCSAでは抽象化を放棄する必要はありません。
戦略ゲーム3ドルの実験結果から、SCSAエージェントは従来の手法よりも優れ、異なるゲームに対して堅牢な性能が得られることが示された。
コードは \url{https://github.com/GAIGResearch/Stratega} でオープンソース化されている。
関連論文リスト
- How to Handle Sketch-Abstraction in Sketch-Based Image Retrieval? [120.49126407479717]
スケッチの抽象化を様々なレベルで処理できるスケッチベース画像検索フレームワークを提案する。
粒度レベルの抽象理解のために、検索モデルはすべての抽象レベルを等しく扱ってはならないと規定する。
私たちのAcc.@qの損失は、評価がいかに厳格であるかという点で、スケッチが焦点を絞りたり壊したりできます。
論文 参考訳(メタデータ) (2024-03-11T23:08:29Z) - Are AlphaZero-like Agents Robust to Adversarial Perturbations? [73.13944217915089]
AlphaZero(AZ)は、ニューラルネットワークベースのGo AIが人間のパフォーマンスを大きく上回ることを示した。
私たちは、Go AIが驚くほど間違った行動を起こさせる可能性のある、敵対的な状態が存在するかどうか尋ねる。
我々は、Go AIに対する最初の敵攻撃を開発し、探索空間を戦略的に減らし、効率よく敵の状態を探索する。
論文 参考訳(メタデータ) (2022-11-07T18:43:25Z) - Spending Thinking Time Wisely: Accelerating MCTS with Virtual Expansions [89.89612827542972]
本稿では,モンテカルロ木探索 (MCTS) の変種を提案する。
9倍のGoボードゲームとAtariゲームの性能と計算結果を評価した。
実験の結果,提案手法は,平均検索時間50%以下で,元の検索アルゴリズムに匹敵する性能が得られることがわかった。
論文 参考訳(メタデータ) (2022-10-23T06:39:20Z) - Discrete State-Action Abstraction via the Successor Representation [3.453310639983932]
抽象化(Abstraction)は、エージェントに潜伏空間の遷移に固有の報酬を与えるアプローチである。
私たちのアプローチは、基盤となる環境の離散的な抽象化を自動的に学習する最初のものです。
提案アルゴリズムであるDSAA(Disdisrete State-Action Abstraction)は,これらのオプションのトレーニングと,それを用いて環境のより効率的な探索を行う。
論文 参考訳(メタデータ) (2022-06-07T17:37:30Z) - Elastic Monte Carlo Tree Search with State Abstraction for Strategy Game
Playing [58.720142291102135]
戦略ビデオゲームは、複雑なゲーム要素によって引き起こされる検索スペースでAIエージェントに挑戦する。
状態抽象化は、状態空間の複雑さを低減する一般的なテクニックである。
我々は,状態抽象化を用いてストラテジーゲームをプレイするアルゴリズムであるElastic MCTSを提案する。
論文 参考訳(メタデータ) (2022-05-30T14:18:45Z) - MDP Abstraction with Successor Features [14.433551477386318]
本研究では,エージェントが状態や時間的抽象化を行う強化学習の文脈における抽象化について検討する。
本研究では,後継機能に基づく新しい抽象スキームである後継抽象化を提案する。
我々の後継抽象化は、異なる環境間で伝達可能なセマンティクスで抽象環境モデルを学習することを可能にする。
論文 参考訳(メタデータ) (2021-10-18T11:35:08Z) - Context-Specific Representation Abstraction for Deep Option Learning [43.68681795014662]
我々は、Deep Option Learning(CRADOL)のためのコンテキスト特化表現抽象化を導入する。
CRADOLは、時間的抽象化とコンテキスト固有の表現抽象化の両方を考慮し、ポリシー空間上の検索のサイズを効果的に削減する新しいフレームワークである。
具体的には、各オプションが状態空間のサブセクションのみを越えてポリシーを学習することのできる、ファクタードな信念状態表現を学習する。
論文 参考訳(メタデータ) (2021-09-20T22:50:01Z) - Learning Abstract Models for Strategic Exploration and Fast Reward
Transfer [85.19766065886422]
我々は,抽象状態のマルコフ決定過程(MDP)を正確に学習し,複雑なエラーを避ける。
本手法は,最も難易度の高い3つのアーケード学習環境ゲームにおいて,強力な結果をもたらす。
学習した抽象MDPを新しい報酬関数に再利用することができ、スクラッチから訓練されたモデルフリーメソッドよりも1000倍少ないサンプルで高い報酬が得られる。
論文 参考訳(メタデータ) (2020-07-12T03:33:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。