A Comprehensive Case Study on the Performance of Machine Learning Methods on the Classification of Solar Panel Electroluminescence Images
- URL: http://arxiv.org/abs/2408.06229v1
- Date: Mon, 12 Aug 2024 15:29:32 GMT
- Title: A Comprehensive Case Study on the Performance of Machine Learning Methods on the Classification of Solar Panel Electroluminescence Images
- Authors: Xinyi Song, Kennedy Odongo, Francis G. Pascual, Yili Hong,
- Abstract summary: Solar cells in the field are vulnerable to various defects.
Electroluminescence (EL) imaging provides effective and non-destructive diagnostics to detect those defects.
We use multiple traditional machine learning and modern deep learning models to classify EL solar cell images into different functional/defective categories.
- Score: 0.5033467447713051
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Photovoltaics (PV) are widely used to harvest solar energy, an important form of renewable energy. Photovoltaic arrays consist of multiple solar panels constructed from solar cells. Solar cells in the field are vulnerable to various defects, and electroluminescence (EL) imaging provides effective and non-destructive diagnostics to detect those defects. We use multiple traditional machine learning and modern deep learning models to classify EL solar cell images into different functional/defective categories. Because of the asymmetry in the number of functional vs. defective cells, an imbalanced label problem arises in the EL image data. The current literature lacks insights on which methods and metrics to use for model training and prediction. In this paper, we comprehensively compare different machine learning and deep learning methods under different performance metrics on the classification of solar cell EL images from monocrystalline and polycrystalline modules. We provide a comprehensive discussion on different metrics. Our results provide insights and guidelines for practitioners in selecting prediction methods and performance metrics.
Related papers
- Micro-Fracture Detection in Photovoltaic Cells with Hardware-Constrained
Devices and Computer Vision [0.0]
crystalline silicon is fragile and vulnerable to cracking over time or in predictive maintenance tasks.
This work aims to developing a system for detecting cell cracks in solar panels to anticipate and alaert of a potential failure.
arXiv Detail & Related papers (2024-03-08T22:09:10Z) - A Comparative Study on Generative Models for High Resolution Solar
Observation Imaging [59.372588316558826]
This work investigates capabilities of current state-of-the-art generative models to accurately capture the data distribution behind observed solar activity states.
Using distributed training on supercomputers, we are able to train generative models for up to 1024x1024 resolution that produce high quality samples indistinguishable to human experts.
arXiv Detail & Related papers (2023-04-14T14:40:32Z) - Pixel-Level Explanation of Multiple Instance Learning Models in
Biomedical Single Cell Images [52.527733226555206]
We investigate the use of four attribution methods to explain a multiple instance learning models.
We study two datasets of acute myeloid leukemia with over 100 000 single cell images.
We compare attribution maps with the annotations of a medical expert to see how the model's decision-making differs from the human standard.
arXiv Detail & Related papers (2023-03-15T14:00:11Z) - Computational Solar Energy -- Ensemble Learning Methods for Prediction
of Solar Power Generation based on Meteorological Parameters in Eastern India [0.0]
It is important to estimate the amount of solar photovoltaic (PV) power generation for a specific geographical location.
In this paper, the impact of weather parameters on solar PV power generation is estimated by several Ensemble ML (EML) models like Bagging, Boosting, Stacking, and Voting.
The results demonstrate greater prediction accuracy of around 96% for Stacking and Voting models.
arXiv Detail & Related papers (2023-01-21T19:16:03Z) - Deep Learning Methods for Calibrated Photometric Stereo and Beyond [86.57469194387264]
Photometric stereo recovers the surface normals of an object from multiple images with varying shading cues.
Deep learning methods have shown a powerful ability in the context of photometric stereo against non-Lambertian surfaces.
arXiv Detail & Related papers (2022-12-16T11:27:44Z) - A scalable framework for annotating photovoltaic cell defects in
electroluminescence images [0.0]
Anomaly detection techniques for PV cells can result in significant cost savings in operation and maintenance.
Recent research has focused on deep learning techniques for automatically detecting anomalies in Electroluminescence (EL) images.
This paper proposes a combination of state-of-the-art data-driven techniques to create a Golden Standard benchmark.
arXiv Detail & Related papers (2022-12-15T12:46:31Z) - A Fault Detection Scheme Utilizing Convolutional Neural Network for PV
Solar Panels with High Accuracy [0.0]
This paper proposes a trained convolutional neural network based fault detection scheme.
For binary classification, the algorithm classifies the input images of PV cells into two categories.
The success rate for the proposed CNN model is 91.1% for binary classification and 88.6% for multi-classification.
arXiv Detail & Related papers (2022-10-14T14:19:33Z) - Physics Embedded Machine Learning for Electromagnetic Data Imaging [83.27424953663986]
Electromagnetic (EM) imaging is widely applied in sensing for security, biomedicine, geophysics, and various industries.
It is an ill-posed inverse problem whose solution is usually computationally expensive. Machine learning (ML) techniques and especially deep learning (DL) show potential in fast and accurate imaging.
This article surveys various schemes to incorporate physics in learning-based EM imaging.
arXiv Detail & Related papers (2022-07-26T02:10:15Z) - CellDefectNet: A Machine-designed Attention Condenser Network for
Electroluminescence-based Photovoltaic Cell Defect Inspection [67.99623869339919]
A big challenge faced by industry in photovoltaic cell visual inspection is the fact that it is currently done manually by human inspectors.
In this work, we introduce CellDefectNet, a highly efficient attention condenser network designed via machine-driven design exploration.
We demonstrate the efficacy of CellDefectNet on a benchmark dataset comprising of a diversity of photovoltaic cells captured using electroluminescence imagery.
arXiv Detail & Related papers (2022-04-25T16:35:19Z) - Adversarial Energy Disaggregation for Non-intrusive Load Monitoring [78.47901044638525]
Energy disaggregation, also known as non-intrusive load monitoring (NILM), challenges the problem of separating the whole-home electricity usage into appliance-specific individual consumptions.
Recent advances reveal that deep neural networks (DNNs) can get favorable performance for NILM.
We introduce the idea of adversarial learning into NILM, which is new for the energy disaggregation task.
arXiv Detail & Related papers (2021-08-02T03:56:35Z) - Weakly Supervised Segmentation of Cracks on Solar Cells using Normalized
Lp Norm [11.014960310006385]
We propose a weakly supervised learning strategy to segment cracks on electroluminescence images of solar cells.
We use a modified ResNet-50 to derive a segmentation from network activation maps.
We show that the method has the potential to solve other weakly supervised segmentation problems as well.
arXiv Detail & Related papers (2020-01-30T10:51:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.