Computational Solar Energy -- Ensemble Learning Methods for Prediction
of Solar Power Generation based on Meteorological Parameters in Eastern India
- URL: http://arxiv.org/abs/2301.10159v1
- Date: Sat, 21 Jan 2023 19:16:03 GMT
- Title: Computational Solar Energy -- Ensemble Learning Methods for Prediction
of Solar Power Generation based on Meteorological Parameters in Eastern India
- Authors: Debojyoti Chakraborty, Jayeeta Mondal, Hrishav Bakul Barua, Ankur
Bhattacharjee
- Abstract summary: It is important to estimate the amount of solar photovoltaic (PV) power generation for a specific geographical location.
In this paper, the impact of weather parameters on solar PV power generation is estimated by several Ensemble ML (EML) models like Bagging, Boosting, Stacking, and Voting.
The results demonstrate greater prediction accuracy of around 96% for Stacking and Voting models.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The challenges in applications of solar energy lies in its intermittency and
dependency on meteorological parameters such as; solar radiation, ambient
temperature, rainfall, wind-speed etc., and many other physical parameters like
dust accumulation etc. Hence, it is important to estimate the amount of solar
photovoltaic (PV) power generation for a specific geographical location.
Machine learning (ML) models have gained importance and are widely used for
prediction of solar power plant performance. In this paper, the impact of
weather parameters on solar PV power generation is estimated by several
Ensemble ML (EML) models like Bagging, Boosting, Stacking, and Voting for the
first time. The performance of chosen ML algorithms is validated by field
dataset of a 10kWp solar PV power plant in Eastern India region. Furthermore, a
complete test-bed framework has been designed for data mining as well as to
select appropriate learning models. It also supports feature selection and
reduction for dataset to reduce space and time complexity of the learning
models. The results demonstrate greater prediction accuracy of around 96% for
Stacking and Voting EML models. The proposed work is a generalized one and can
be very useful for predicting the performance of large-scale solar PV power
plants also.
Related papers
- Personalized Adapter for Large Meteorology Model on Devices: Towards Weather Foundation Models [36.229082478423585]
LM-Weather is a generic approach to taming pre-trained language models (PLMs)
We introduce a lightweight personalized adapter into PLMs and endow it with weather pattern awareness.
Experiments show LM-Weather outperforms the state-of-the-art results by a large margin across various tasks.
arXiv Detail & Related papers (2024-05-24T15:25:09Z) - Forecasting SEP Events During Solar Cycles 23 and 24 Using Interpretable
Machine Learning [38.321248253111776]
We employ a suite of machine learning strategies to evaluate the predictive potential of a new data product for a forecast of post-solar flare SEP events.
Despite the augmented volume of data, the prediction accuracy reaches 0.7 +- 0.1, which aligns with but does not exceed these published benchmarks.
arXiv Detail & Related papers (2024-03-04T23:12:17Z) - FusionSF: Fuse Heterogeneous Modalities in a Vector Quantized Framework
for Robust Solar Power Forecasting [24.57911612111109]
We propose a multi-modality fusion framework to integrate historical power data, numerical weather prediction, and satellite images.
Our framework demonstrates strong zero-shot forecasting capability, which is especially useful for those newly installed plants.
Our model not only operates with robustness but also boosts accuracy in both zero-shot forecasting and scenarios rich with training data, surpassing leading models.
arXiv Detail & Related papers (2024-02-08T17:03:10Z) - Benchmarks and Custom Package for Energy Forecasting [55.460452605056894]
Energy forecasting aims to minimize the cost of subsequent tasks such as power grid dispatch.
In this paper, we collected large-scale load datasets and released a new renewable energy dataset.
We conducted extensive experiments with 21 forecasting methods in these energy datasets at different levels under 11 evaluation metrics.
arXiv Detail & Related papers (2023-07-14T06:50:02Z) - Improving day-ahead Solar Irradiance Time Series Forecasting by
Leveraging Spatio-Temporal Context [46.72071291175356]
Solar power harbors immense potential in mitigating climate change by substantially reducing CO$_2$ emissions.
However, the inherent variability of solar irradiance poses a significant challenge for seamlessly integrating solar power into the electrical grid.
In this paper, we put forth a deep learning architecture designed to harnesstemporal context using satellite data.
arXiv Detail & Related papers (2023-06-01T19:54:39Z) - A Comparative Study on Generative Models for High Resolution Solar
Observation Imaging [59.372588316558826]
This work investigates capabilities of current state-of-the-art generative models to accurately capture the data distribution behind observed solar activity states.
Using distributed training on supercomputers, we are able to train generative models for up to 1024x1024 resolution that produce high quality samples indistinguishable to human experts.
arXiv Detail & Related papers (2023-04-14T14:40:32Z) - Solar Power Prediction Using Machine Learning [0.0]
This paper presents a machine learning-based approach for predicting solar power generation with high accuracy using a 99% AUC metric.
The approach includes data collection, pre-processing, feature selection, model selection, training, evaluation, and deployment.
The trained machine learning models are then deployed in a production environment, where they can be used to make real-time predictions about solar power generation.
arXiv Detail & Related papers (2023-03-11T06:31:46Z) - Comparison and Evaluation of Methods for a Predict+Optimize Problem in
Renewable Energy [42.00952788334554]
This paper presents the findings of the IEEE-CIS Technical Challenge on Predict+ for Renewable Energy Scheduling," held in 2021.
We present a comparison and evaluation of the seven highest-ranked solutions in the competition.
The winning method predicted different scenarios and optimized over all scenarios using a sample average approximation method.
arXiv Detail & Related papers (2022-12-21T02:34:12Z) - Feature Construction and Selection for PV Solar Power Modeling [1.8960797847221296]
Building a model to predict photovoltaic (PV) power generation allows decision-makers to hedge energy shortages.
The solar power output is time-series data dependent on many factors, such as irradiance and weather.
A machine learning framework for 1-hour ahead solar power prediction is developed in this paper based on the historical data.
arXiv Detail & Related papers (2022-02-13T06:49:28Z) - Prediction of Solar Radiation Using Artificial Neural Network [0.0]
This paper presents an algorithm that can be used to predict an hourly activity of solar radiation.
The dataset consists of temperature of air, time, humidity, wind speed, atmospheric pressure, direction of wind and solar radiation data.
Two models are created to efficiently create a system capable of interpreting patterns through supervised learning data.
arXiv Detail & Related papers (2021-04-01T20:41:27Z) - Short term solar energy prediction by machine learning algorithms [0.47791962198275073]
We report daily prediction of solar energy by exploiting the strength of machine learning techniques.
Forecast models of base line regressors including linear, ridge, lasso, decision tree, random forest and artificial neural networks have been implemented.
It has been observed that improved accuracy is achieved through random forest and ridge regressor for both grid sizes.
arXiv Detail & Related papers (2020-10-25T17:56:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.