Overcoming the Zero-Rate Hashing Bound with Holographic Quantum Error Correction
- URL: http://arxiv.org/abs/2408.06232v2
- Date: Thu, 19 Dec 2024 20:33:16 GMT
- Title: Overcoming the Zero-Rate Hashing Bound with Holographic Quantum Error Correction
- Authors: Junyu Fan, Matthew Steinberg, Alexander Jahn, Chunjun Cao, Sebastian Feld,
- Abstract summary: Finding an optimal quantum code under biased noise is a challenging problem.
benchmark for this capacity is given by the hashing bound.
We show that zero-rate holographic codes, built from hyperbolic tensor networks, fulfill both conditions.
- Score: 40.671162828621426
- License:
- Abstract: A crucial insight for practical quantum error correction is that different types of errors, such as single-qubit Pauli operators, typically occur with different probabilities. Finding an optimal quantum code under such biased noise is a challenging problem, related to finding the (generally unknown) maximum capacity of the corresponding noisy channel. A benchmark for this capacity is given by the hashing bound, describing the performance of random stabilizer codes, which leads to the challenge of finding codes that reach or exceed this bound while also being efficiently decodable. In this work, we show that asymptotically zero-rate holographic codes, built from hyperbolic tensor networks that model holographic bulk/boundary dualities, fulfill both conditions. Of the five holographic code models considered, all are found to reach the hashing bound in some bias regime and one, the holographic surface-code fragment, appears to even exceed the capacity of previously known codes in the 2-Pauli-dominated noise regime. In addition, we consider Clifford deformations that allow all considered codes to reach the hashing bound for 1-Pauli-dominated noise as well. Our results thus establish that holographic codes, which were previously shown to possess efficient tensor-network decoders, also exhibit competitive thresholds under biased noise.
Related papers
- Modeling error correction with Lindblad dynamics and approximate channels [0.0]
We study how different approximations of the noise capture the performance of the five-qubit code.
A Pauli approximation going beyond a single-qubit channel, is sensitive to the details of the noise, state, and decoder.
We calculate the code pseudo-threshold emerging within this model, and demonstrate how knowledge of the qubit parameters and connectivity can be used to design better decoders.
arXiv Detail & Related papers (2024-02-26T16:48:34Z) - Fault-Tolerant Quantum Memory using Low-Depth Random Circuit Codes [0.24578723416255752]
Low-depth random circuit codes possess many desirable properties for quantum error correction.
We design a fault-tolerant distillation protocol for preparing encoded states of one-dimensional random circuit codes.
We show through numerical simulations that our protocol can correct erasure errors up to an error rate of $2%$.
arXiv Detail & Related papers (2023-11-29T19:00:00Z) - Testing the Accuracy of Surface Code Decoders [55.616364225463066]
Large-scale, fault-tolerant quantum computations will be enabled by quantum error-correcting codes (QECC)
This work presents the first systematic technique to test the accuracy and effectiveness of different QECC decoding schemes.
arXiv Detail & Related papers (2023-11-21T10:22:08Z) - Deep Quantum Error Correction [73.54643419792453]
Quantum error correction codes (QECC) are a key component for realizing the potential of quantum computing.
In this work, we efficiently train novel emphend-to-end deep quantum error decoders.
The proposed method demonstrates the power of neural decoders for QECC by achieving state-of-the-art accuracy.
arXiv Detail & Related papers (2023-01-27T08:16:26Z) - Better-than-classical Grover search via quantum error detection and
suppression [0.0]
Grover's search algorithm is one of the first quantum algorithms to exhibit a provable quantum advantage.
Here, we report better-than-classical success probabilities for a complete Grover search algorithm on the largest scale demonstrated to date.
arXiv Detail & Related papers (2022-11-08T20:31:02Z) - Improved decoding of circuit noise and fragile boundaries of tailored
surface codes [61.411482146110984]
We introduce decoders that are both fast and accurate, and can be used with a wide class of quantum error correction codes.
Our decoders, named belief-matching and belief-find, exploit all noise information and thereby unlock higher accuracy demonstrations of QEC.
We find that the decoders led to a much higher threshold and lower qubit overhead in the tailored surface code with respect to the standard, square surface code.
arXiv Detail & Related papers (2022-03-09T18:48:54Z) - Pauli channels can be estimated from syndrome measurements in quantum
error correction [0.7264378254137809]
We show that a stabilizer code can be used to estimate Pauli channels with correlations across a number of qubits given by the pure distance.
It also allows for measurement errors within the framework of quantum data-syndrome codes.
It is our hope that this work opens up interesting applications, such as the online adaptation of a decoder to time-varying noise.
arXiv Detail & Related papers (2021-07-29T18:01:10Z) - Efficient and robust certification of genuine multipartite entanglement
in noisy quantum error correction circuits [58.720142291102135]
We introduce a conditional witnessing technique to certify genuine multipartite entanglement (GME)
We prove that the detection of entanglement in a linear number of bipartitions by a number of measurements scales linearly, suffices to certify GME.
We apply our method to the noisy readout of stabilizer operators of the distance-three topological color code and its flag-based fault-tolerant version.
arXiv Detail & Related papers (2020-10-06T18:00:07Z) - The XZZX Surface Code [2.887393074590696]
We show that a variant of the surface code -- the XZZX code -- offers remarkable performance for fault-tolerant quantum computation.
The error threshold of this code matches what can be achieved with random codes (hashing) for every single-qubit Pauli noise channel.
We show that it is possible to maintain all of these advantages when we perform fault-tolerant quantum computation.
arXiv Detail & Related papers (2020-09-16T18:00:01Z) - Fault-tolerant Coding for Quantum Communication [71.206200318454]
encode and decode circuits to reliably send messages over many uses of a noisy channel.
For every quantum channel $T$ and every $eps>0$ there exists a threshold $p(epsilon,T)$ for the gate error probability below which rates larger than $C-epsilon$ are fault-tolerantly achievable.
Our results are relevant in communication over large distances, and also on-chip, where distant parts of a quantum computer might need to communicate under higher levels of noise.
arXiv Detail & Related papers (2020-09-15T15:10:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.