Universal fault-tolerant logic with heterogeneous holographic codes
- URL: http://arxiv.org/abs/2504.10386v1
- Date: Mon, 14 Apr 2025 16:28:33 GMT
- Title: Universal fault-tolerant logic with heterogeneous holographic codes
- Authors: Matthew Steinberg, Junyu Fan, Jens Eisert, Sebastian Feld, Alexander Jahn, Chunjun Cao,
- Abstract summary: We introduce a new class of holographic codes that realize the ability to support universal fault-tolerant quantum logic.<n>Unlike standard tunabled codes, we establish that the new codes can encode more than a single logical qubit per code block.<n>Our work strengthens the case for the utility of holographic quantum codes for practical quantum computing.
- Score: 38.98035278249248
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The study of holographic bulk-boundary dualities has led to the construction of novel quantum error correcting codes. Although these codes have shed new light on conceptual aspects of these dualities, they have widely been believed to lack a crucial feature of practical quantum error correction: The ability to support universal fault-tolerant quantum logic. In this work, we introduce a new class of holographic codes that realize this feature. These heterogeneous holographic codes are constructed by combining two seed codes in a tensor network on an alternating hyperbolic tiling. We show how this construction generalizes previous strategies for fault tolerance in tree-type concatenated codes, allowing one to implement non-Clifford gates fault-tolerantly on the holographic boundary. We also demonstrate that these codes allow for high erasure thresholds under a suitable heterogeneous combination of specific seed codes. Compared to previous concatenated codes, heterogeneous holographic codes achieve large overhead savings in physical qubits, e.g., a $21.8\%$ reduction for a two-layer Steane/quantum Reed-Muller combination. Unlike standard concatenated codes, we establish that the new codes can encode more than a single logical qubit per code block by applying ``black hole'' deformations with tunable rate and distance, while possessing fully addressable, universal fault-tolerant gate sets. Therefore, our work strengthens the case for the utility of holographic quantum codes for practical quantum computing.
Related papers
- Existence and Characterisation of Coprime Bivariate Bicycle Codes [0.0]
One of the holy grails of quantum error correction (QEC) codes is to construct codes with minimumally good parameters.<n>BB codes have emerged as a promising candidate for such compact memory.<n>In this Article, we explore these parameters by focusing on the subclass of coprime BB codes.
arXiv Detail & Related papers (2025-02-24T11:04:15Z) - Families of $d=2$ 2D subsystem stabilizer codes for universal Hamiltonian quantum computation with two-body interactions [0.0]
In the absence of fault tolerant quantum error correction for analog, Hamiltonian quantum computation, error suppression via energy penalties is an effective alternative.
We construct families of distance-$2$ stabilizer subsystem codes we call trapezoid codes''
We identify a family of codes achieving the maximum code rate, and by slightly relaxing this constraint, uncover a broader range of codes with enhanced physical locality.
arXiv Detail & Related papers (2024-12-09T18:36:38Z) - Learning Linear Block Error Correction Codes [62.25533750469467]
We propose for the first time a unified encoder-decoder training of binary linear block codes.
We also propose a novel Transformer model in which the self-attention masking is performed in a differentiable fashion for the efficient backpropagation of the code gradient.
arXiv Detail & Related papers (2024-05-07T06:47:12Z) - Experimental fault-tolerant code switching [1.9088985324817254]
We present the first experimental implementation of fault-tolerant code switching between two codes.
We construct logical circuits and prepare 12 different logical states which are not accessible in a fault-tolerant way within a single code.
Our results experimentally open up a new route towards deterministic control over logical qubits with low auxiliary qubit overhead.
arXiv Detail & Related papers (2024-03-20T16:40:57Z) - Small Quantum Codes from Algebraic Extensions of Generalized Bicycle
Codes [4.299840769087443]
Quantum LDPC codes range from the surface code, which has a vanishing encoding rate, to very promising codes with constant encoding rate and linear distance.
We devise small quantum codes that are inspired by a subset of quantum LDPC codes, known as generalized bicycle (GB) codes.
arXiv Detail & Related papers (2024-01-15T10:38:13Z) - Fault-Tolerant Computing with Single Qudit Encoding [49.89725935672549]
We discuss stabilizer quantum-error correction codes implemented in a single multi-level qudit.
These codes can be customized to the specific physical errors on the qudit, effectively suppressing them.
We demonstrate a Fault-Tolerant implementation on molecular spin qudits, showcasing nearly exponential error suppression with only linear qudit size growth.
arXiv Detail & Related papers (2023-07-20T10:51:23Z) - Holographic Codes from Hyperinvariant Tensor Networks [70.31754291849292]
We show that a new class of exact holographic codes, extending the previously proposed hyperinvariant tensor networks into quantum codes, produce the correct boundary correlation functions.
This approach yields a dictionary between logical states in the bulk and the critical renormalization group flow of boundary states.
arXiv Detail & Related papers (2023-04-05T20:28:04Z) - Gaussian conversion protocol for heralded generation of qunaught states [66.81715281131143]
bosonic codes map qubit-type quantum information onto the larger bosonic Hilbert space.
We convert between two instances of these codes GKP qunaught states and four-foldsymmetric binomial states corresponding to a zero-logical encoded qubit.
We obtain GKP qunaught states with a fidelity of over 98% and a probability of approximately 3.14%.
arXiv Detail & Related papers (2023-01-24T14:17:07Z) - Morphing quantum codes [77.34726150561087]
We morph the 15-qubit Reed-Muller code to obtain the smallest known stabilizer code with a fault-tolerant logical $T$ gate.
We construct a family of hybrid color-toric codes by morphing the color code.
arXiv Detail & Related papers (2021-12-02T17:43:00Z) - Trellis Decoding For Qudit Stabilizer Codes And Its Application To Qubit
Topological Codes [3.9962751777898955]
We show that trellis decoders have strong structure, extend the results using classical coding theory as a guide, and demonstrate a canonical form from which the structural properties of the decoding graph may be computed.
The modified decoder works for any stabilizer code $S$ and separates into two parts: a one-time, offline which builds a compact, graphical representation of the normalizer of the code, $Sperp$, and a quick, parallel, online computation using the Viterbi algorithm.
arXiv Detail & Related papers (2021-06-15T16:01:42Z) - Low-overhead pieceable fault-tolerant construction of logical
controlled-phase circuit for degenerate quantum code [11.106110829349221]
We search for a non-transversal but fault-tolerant construction of a logical controlled-phase gate for quantum code.
We find a 3-piece fault-tolerant logical CZ circuit on this code.
arXiv Detail & Related papers (2021-05-15T04:06:12Z) - Approximate Bacon-Shor Code and Holography [0.0]
We explicitly construct a class of holographic quantum error correction codes with non-algebra centers.
We use the Bacon-Shor codes and perfect tensors to construct a gauge code (or a stabilizer code with gauge-fixing)
We then construct approximate versions of the holographic hybrid codes by "skewing" the code subspace.
arXiv Detail & Related papers (2020-10-12T18:39:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.