Reciprocal Learning
- URL: http://arxiv.org/abs/2408.06257v3
- Date: Fri, 1 Nov 2024 20:48:15 GMT
- Title: Reciprocal Learning
- Authors: Julian Rodemann, Christoph Jansen, Georg Schollmeyer,
- Abstract summary: We show that a wide array of machine learning algorithms are specific instances of one single paradigm: reciprocal learning.
We introduce reciprocal learning as a generalization of these algorithms using the language of decision theory.
We find that reciprocal learning algorithms converge at linear rates to an approximately optimal model under relatively mild assumptions on the loss function.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We demonstrate that a wide array of machine learning algorithms are specific instances of one single paradigm: reciprocal learning. These instances range from active learning over multi-armed bandits to self-training. We show that all these algorithms do not only learn parameters from data but also vice versa: They iteratively alter training data in a way that depends on the current model fit. We introduce reciprocal learning as a generalization of these algorithms using the language of decision theory. This allows us to study under what conditions they converge. The key is to guarantee that reciprocal learning contracts such that the Banach fixed-point theorem applies. In this way, we find that reciprocal learning algorithms converge at linear rates to an approximately optimal model under relatively mild assumptions on the loss function, if their predictions are probabilistic and the sample adaption is both non-greedy and either randomized or regularized. We interpret these findings and provide corollaries that relate them to specific active learning, self-training, and bandit algorithms.
Related papers
- Probably Approximately Precision and Recall Learning [62.912015491907994]
Precision and Recall are foundational metrics in machine learning.
One-sided feedback--where only positive examples are observed during training--is inherent in many practical problems.
We introduce a PAC learning framework where each hypothesis is represented by a graph, with edges indicating positive interactions.
arXiv Detail & Related papers (2024-11-20T04:21:07Z) - Ticketed Learning-Unlearning Schemes [57.89421552780526]
We propose a new ticketed model for learning--unlearning.
We provide space-efficient ticketed learning--unlearning schemes for a broad family of concept classes.
arXiv Detail & Related papers (2023-06-27T18:54:40Z) - What learning algorithm is in-context learning? Investigations with
linear models [87.91612418166464]
We investigate the hypothesis that transformer-based in-context learners implement standard learning algorithms implicitly.
We show that trained in-context learners closely match the predictors computed by gradient descent, ridge regression, and exact least-squares regression.
Preliminary evidence that in-context learners share algorithmic features with these predictors.
arXiv Detail & Related papers (2022-11-28T18:59:51Z) - ModelDiff: A Framework for Comparing Learning Algorithms [86.19580801269036]
We study the problem of (learning) algorithm comparison, where the goal is to find differences between models trained with two different learning algorithms.
We present ModelDiff, a method that leverages the datamodels framework to compare learning algorithms based on how they use their training data.
arXiv Detail & Related papers (2022-11-22T18:56:52Z) - Neural Active Learning on Heteroskedastic Distributions [29.01776999862397]
We demonstrate the catastrophic failure of active learning algorithms on heteroskedastic datasets.
We propose a new algorithm that incorporates a model difference scoring function for each data point to filter out the noisy examples and sample clean examples.
arXiv Detail & Related papers (2022-11-02T07:30:19Z) - Improved Robust Algorithms for Learning with Discriminative Feature
Feedback [21.58493386054356]
Discriminative Feature Feedback is a protocol for interactive learning based on feature explanations that are provided by a human teacher.
We provide new robust interactive learning algorithms for the Discriminative Feature Feedback model.
arXiv Detail & Related papers (2022-09-08T12:11:12Z) - Simple Stochastic and Online Gradient DescentAlgorithms for Pairwise
Learning [65.54757265434465]
Pairwise learning refers to learning tasks where the loss function depends on a pair instances.
Online descent (OGD) is a popular approach to handle streaming data in pairwise learning.
In this paper, we propose simple and online descent to methods for pairwise learning.
arXiv Detail & Related papers (2021-11-23T18:10:48Z) - On the Necessity of Auditable Algorithmic Definitions for Machine
Unlearning [13.149070833843133]
Machine unlearning, i.e. having a model forget about some of its training data, has become increasingly important as privacy legislation promotes variants of the right-to-be-forgotten.
We first show that the definition that underlies approximate unlearning, which seeks to prove the approximately unlearned model is close to an exactly retrained model, is incorrect because one can obtain the same model using different datasets.
We then turn to exact unlearning approaches and ask how to verify their claims of unlearning.
arXiv Detail & Related papers (2021-10-22T16:16:56Z) - A Theory of Universal Learning [26.51949485387526]
We show that there are only three possible rates of universal learning.
We show that the learning curves of any given concept class decay either at an exponential, or arbitrarily slow rates.
arXiv Detail & Related papers (2020-11-09T15:10:32Z) - Meta-learning with Stochastic Linear Bandits [120.43000970418939]
We consider a class of bandit algorithms that implement a regularized version of the well-known OFUL algorithm, where the regularization is a square euclidean distance to a bias vector.
We show both theoretically and experimentally, that when the number of tasks grows and the variance of the task-distribution is small, our strategies have a significant advantage over learning the tasks in isolation.
arXiv Detail & Related papers (2020-05-18T08:41:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.