Probably Approximately Precision and Recall Learning
- URL: http://arxiv.org/abs/2411.13029v1
- Date: Wed, 20 Nov 2024 04:21:07 GMT
- Title: Probably Approximately Precision and Recall Learning
- Authors: Lee Cohen, Yishay Mansour, Shay Moran, Han Shao,
- Abstract summary: Precision and Recall are foundational metrics in machine learning.
One-sided feedback--where only positive examples are observed during training--is inherent in many practical problems.
We introduce a PAC learning framework where each hypothesis is represented by a graph, with edges indicating positive interactions.
- Score: 62.912015491907994
- License:
- Abstract: Precision and Recall are foundational metrics in machine learning where both accurate predictions and comprehensive coverage are essential, such as in recommender systems and multi-label learning. In these tasks, balancing precision (the proportion of relevant items among those predicted) and recall (the proportion of relevant items successfully predicted) is crucial. A key challenge is that one-sided feedback--where only positive examples are observed during training--is inherent in many practical problems. For instance, in recommender systems like YouTube, training data only consists of videos that a user has actively selected, while unselected items remain unseen. Despite this lack of negative feedback in training, avoiding undesirable recommendations at test time is essential. We introduce a PAC learning framework where each hypothesis is represented by a graph, with edges indicating positive interactions, such as between users and items. This framework subsumes the classical binary and multi-class PAC learning models as well as multi-label learning with partial feedback, where only a single random correct label per example is observed, rather than all correct labels. Our work uncovers a rich statistical and algorithmic landscape, with nuanced boundaries on what can and cannot be learned. Notably, classical methods like Empirical Risk Minimization fail in this setting, even for simple hypothesis classes with only two hypotheses. To address these challenges, we develop novel algorithms that learn exclusively from positive data, effectively minimizing both precision and recall losses. Specifically, in the realizable setting, we design algorithms that achieve optimal sample complexity guarantees. In the agnostic case, we show that it is impossible to achieve additive error guarantees--as is standard in PAC learning--and instead obtain meaningful multiplicative approximations.
Related papers
- Fairness Without Harm: An Influence-Guided Active Sampling Approach [32.173195437797766]
We aim to train models that mitigate group fairness disparity without causing harm to model accuracy.
The current data acquisition methods, such as fair active learning approaches, typically require annotating sensitive attributes.
We propose a tractable active data sampling algorithm that does not rely on training group annotations.
arXiv Detail & Related papers (2024-02-20T07:57:38Z) - Joint empirical risk minimization for instance-dependent
positive-unlabeled data [4.112909937203119]
Learning from positive and unlabeled data (PU learning) is actively researched machine learning task.
The goal is to train a binary classification model based on a dataset containing part on positives which are labeled, and unlabeled instances.
Unlabeled set includes remaining part positives and all negative observations.
arXiv Detail & Related papers (2023-12-27T12:45:12Z) - Learning with Complementary Labels Revisited: The Selected-Completely-at-Random Setting Is More Practical [66.57396042747706]
Complementary-label learning is a weakly supervised learning problem.
We propose a consistent approach that does not rely on the uniform distribution assumption.
We find that complementary-label learning can be expressed as a set of negative-unlabeled binary classification problems.
arXiv Detail & Related papers (2023-11-27T02:59:17Z) - One-bit Supervision for Image Classification: Problem, Solution, and
Beyond [114.95815360508395]
This paper presents one-bit supervision, a novel setting of learning with fewer labels, for image classification.
We propose a multi-stage training paradigm and incorporate negative label suppression into an off-the-shelf semi-supervised learning algorithm.
In multiple benchmarks, the learning efficiency of the proposed approach surpasses that using full-bit, semi-supervised supervision.
arXiv Detail & Related papers (2023-11-26T07:39:00Z) - Learnability, Sample Complexity, and Hypothesis Class Complexity for
Regression Models [10.66048003460524]
This work is inspired by the foundation of PAC and is motivated by the existing regression learning issues.
The proposed approach, denoted by epsilon-Confidence Approximately Correct (epsilon CoAC), utilizes Kullback Leibler divergence (relative entropy)
It enables the learner to compare hypothesis classes of different complexity orders and choose among them the optimum with the minimum epsilon.
arXiv Detail & Related papers (2023-03-28T15:59:12Z) - Improved Robust Algorithms for Learning with Discriminative Feature
Feedback [21.58493386054356]
Discriminative Feature Feedback is a protocol for interactive learning based on feature explanations that are provided by a human teacher.
We provide new robust interactive learning algorithms for the Discriminative Feature Feedback model.
arXiv Detail & Related papers (2022-09-08T12:11:12Z) - Uncertainty Estimation for Language Reward Models [5.33024001730262]
Language models can learn a range of capabilities from unsupervised training on text corpora.
It is often easier for humans to choose between options than to provide labeled data, and prior work has achieved state-of-the-art performance by training a reward model from such preference comparisons.
We seek to address these problems via uncertainty estimation, which can improve sample efficiency and robustness using active learning and risk-averse reinforcement learning.
arXiv Detail & Related papers (2022-03-14T20:13:21Z) - Agree to Disagree: Diversity through Disagreement for Better
Transferability [54.308327969778155]
We propose D-BAT (Diversity-By-disAgreement Training), which enforces agreement among the models on the training data.
We show how D-BAT naturally emerges from the notion of generalized discrepancy.
arXiv Detail & Related papers (2022-02-09T12:03:02Z) - Learning with Proper Partial Labels [87.65718705642819]
Partial-label learning is a kind of weakly-supervised learning with inexact labels.
We show that this proper partial-label learning framework includes many previous partial-label learning settings.
We then derive a unified unbiased estimator of the classification risk.
arXiv Detail & Related papers (2021-12-23T01:37:03Z) - Progressive Identification of True Labels for Partial-Label Learning [112.94467491335611]
Partial-label learning (PLL) is a typical weakly supervised learning problem, where each training instance is equipped with a set of candidate labels among which only one is the true label.
Most existing methods elaborately designed as constrained optimizations that must be solved in specific manners, making their computational complexity a bottleneck for scaling up to big data.
This paper proposes a novel framework of classifier with flexibility on the model and optimization algorithm.
arXiv Detail & Related papers (2020-02-19T08:35:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.