論文の概要: Open-Source Molecular Processing Pipeline for Generating Molecules
- arxiv url: http://arxiv.org/abs/2408.06261v1
- Date: Mon, 12 Aug 2024 16:21:29 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-13 12:53:36.209429
- Title: Open-Source Molecular Processing Pipeline for Generating Molecules
- Title(参考訳): 分子生成のためのオープンソースの分子処理パイプライン
- Authors: Shreyas V, Jose Siguenza, Karan Bania, Bharath Ramsundar,
- Abstract要約: 我々は、生成分子モデルを構築するためのオープンソースのインフラを広く使われているDeepChemライブラリに導入する。
特に、PyTorch [Paszke et al., 2019] に、MolGAN ( Molecular Generative Adversarial Networks) と正規化フローの高性能な実装を追加します。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Generative models for molecules have shown considerable promise for use in computational chemistry, but remain difficult to use for non-experts. For this reason, we introduce open-source infrastructure for easily building generative molecular models into the widely used DeepChem [Ramsundar et al., 2019] library with the aim of creating a robust and reusable molecular generation pipeline. In particular, we add high quality PyTorch [Paszke et al., 2019] implementations of the Molecular Generative Adversarial Networks (MolGAN) [Cao and Kipf, 2022] and Normalizing Flows [Papamakarios et al., 2021]. Our implementations show strong performance comparable with past work [Kuznetsov and Polykovskiy, 2021, Cao and Kipf, 2022].
- Abstract(参考訳): 分子の生成モデルは、計算化学での使用をかなり約束しているが、非専門家での使用は困難である。
このような理由から,我々は生成分子モデルを簡単に構築するためのオープンソース基盤を,堅牢で再利用可能な分子生成パイプラインの構築を目的として,広く使用されているDeepChem [Ramsundar et al , 2019]ライブラリに導入した。
特に、PyTorch [Paszke et al , 2019] の分子生成逆数ネットワーク (MolGAN) [Cao and Kipf, 2022] と正規化フロー [Papamakarios et al , 2021] の実装を高品質に追加する。
Kuznetsov と Polykovskiy, 2021, Cao と Kipf, 2022] に匹敵するパフォーマンスを示している。
関連論文リスト
- RGFN: Synthesizable Molecular Generation Using GFlowNets [51.33672611338754]
本稿では,化学反応の空間内で直接動作するGFlowNetフレームワークの拡張であるReaction-GFlowNetを提案する。
RGFNは、生成した候補の同等の品質を維持しながら、アウト・オブ・ボックスの合成を可能にする。
提案手法の有効性を,事前訓練されたプロキシモデルやGPUアクセラレーションドッキングなど,さまざまなオラクルモデルに適用した。
論文 参考訳(メタデータ) (2024-06-01T13:11:11Z) - LLamol: A Dynamic Multi-Conditional Generative Transformer for De Novo
Molecular Design [0.0]
LLamolはLLama 2アーキテクチャに基づいた単一の新しい生成トランスフォーマーモデルである。
モデルが最大4つの条件で単一条件および多条件の有機分子生成を順応的に処理できることを実証する。
より詳しくは,個別に,あるいは数値特性と組み合わせて,トークンシーケンスを条件付けに活用するモデルの能力について紹介する。
論文 参考訳(メタデータ) (2023-11-24T10:59:12Z) - STRIDE: Structure-guided Generation for Inverse Design of Molecules [0.24578723416255752]
$textbfSTRIDE$は、既知の分子によって誘導される無条件生成モデルを持つ新規分子を生成する生成分子ワークフローである。
生成分子は、平均21.7%低い合成アクセシビリティスコアを持ち、生成分子の5.9%のイオン化ポテンシャルを誘導する。
論文 参考訳(メタデータ) (2023-11-06T08:22:35Z) - MolHF: A Hierarchical Normalizing Flow for Molecular Graph Generation [4.517805235253331]
MolHFは分子グラフを粗い方法で生成する新しい階層型フローベースモデルである。
MolHFは100以上の重原子を持つより大きな分子(ポリマー)をモデル化するための最初のフローベースモデルである。
論文 参考訳(メタデータ) (2023-05-15T08:59:35Z) - An Equivariant Generative Framework for Molecular Graph-Structure
Co-Design [54.92529253182004]
分子グラフ構造アンダーラインCo設計のための機械学習ベースの生成フレームワークであるMollCodeを提案する。
MolCodeでは、3D幾何情報によって分子2Dグラフの生成が促進され、それによって分子3D構造の予測が導かれる。
分子設計における2次元トポロジーと3次元幾何は本質的に相補的な情報を含んでいることが明らかとなった。
論文 参考訳(メタデータ) (2023-04-12T13:34:22Z) - Molecular Fingerprints for Robust and Efficient ML-Driven Molecular
Generation [0.0]
そこで本研究では,分子生成に応用した分子指紋を用いた可変オートエンコーダを提案する。
化学合成アクセシビリティ(DeltabarSAS$=-0.83)と計算効率は,既存のSMILESアーキテクチャと比較して5.9倍に向上した。
論文 参考訳(メタデータ) (2022-11-16T18:07:43Z) - Retrieval-based Controllable Molecule Generation [63.44583084888342]
制御可能な分子生成のための検索に基づく新しいフレームワークを提案する。
我々は、与えられた設計基準を満たす分子の合成に向けて、事前学習された生成モデルを操るために、分子の小さなセットを使用します。
提案手法は生成モデルの選択に非依存であり,タスク固有の微調整は不要である。
論文 参考訳(メタデータ) (2022-08-23T17:01:16Z) - MolGraph: a Python package for the implementation of molecular graphs
and graph neural networks with TensorFlow and Keras [51.92255321684027]
MolGraphは、分子機械学習(ML)のためのグラフニューラルネットワーク(GNN)パッケージである
MolGraphは、分子ML問題を解決するためにGNNアルゴリズムに渡すことができる小さな分子グラフを生成するための化学モジュールを実装している。
GNNは分子識別に有用であり,クロマトグラフィー保持時間データの解釈性が向上した。
論文 参考訳(メタデータ) (2022-08-21T18:37:41Z) - An Empirical Study of Graphormer on Large-Scale Molecular Modeling
Datasets [87.00711479972503]
グラフマー-V2」は、バニラモデルよりも大規模な分子モデルデータセットにおいてより良い結果が得られる可能性がある。
グローバルな受信フィールドとアダプティブアグリゲーション戦略により、Graphormerは従来のメッセージパッシングベースのGNNよりも強力である。
論文 参考訳(メタデータ) (2022-02-28T16:32:42Z) - Conditional Constrained Graph Variational Autoencoders for Molecule
Design [70.59828655929194]
本稿では、このキーイデアを最先端のモデルで実装した、条件制約付きグラフ変分オートエンコーダ(CCGVAE)を提案する。
分子生成のために広く採用されている2つのデータセットについて、いくつかの評価指標について改善した結果を示す。
論文 参考訳(メタデータ) (2020-09-01T21:58:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。