Dynamic Regret for Strongly Adaptive Methods and Optimality of Online
KRR
- URL: http://arxiv.org/abs/2111.11550v1
- Date: Mon, 22 Nov 2021 21:52:47 GMT
- Title: Dynamic Regret for Strongly Adaptive Methods and Optimality of Online
KRR
- Authors: Dheeraj Baby, Hilaf Hasson, Yuyang Wang
- Abstract summary: We show that Strongly Adaptive (SA) algorithms can be viewed as a principled way of controlling dynamic regret.
We derive a new lower bound on a certain penalized regret which establishes the near minimax optimality of online Kernel Ridge Regression (KRR)
- Score: 13.165557713537389
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We consider the framework of non-stationary Online Convex Optimization where
a learner seeks to control its dynamic regret against an arbitrary sequence of
comparators. When the loss functions are strongly convex or exp-concave, we
demonstrate that Strongly Adaptive (SA) algorithms can be viewed as a
principled way of controlling dynamic regret in terms of path variation $V_T$
of the comparator sequence. Specifically, we show that SA algorithms enjoy
$\tilde O(\sqrt{TV_T} \vee \log T)$ and $\tilde O(\sqrt{dTV_T} \vee d\log T)$
dynamic regret for strongly convex and exp-concave losses respectively without
apriori knowledge of $V_T$. The versatility of the principled approach is
further demonstrated by the novel results in the setting of learning against
bounded linear predictors and online regression with Gaussian kernels.
Under a related setting, the second component of the paper addresses an open
question posed by Zhdanov and Kalnishkan (2010) that concerns online kernel
regression with squared error losses. We derive a new lower bound on a certain
penalized regret which establishes the near minimax optimality of online Kernel
Ridge Regression (KRR). Our lower bound can be viewed as an RKHS extension to
the lower bound derived in Vovk (2001) for online linear regression in finite
dimensions.
Related papers
- LEARN: An Invex Loss for Outlier Oblivious Robust Online Optimization [56.67706781191521]
An adversary can introduce outliers by corrupting loss functions in an arbitrary number of k, unknown to the learner.
We present a robust online rounds optimization framework, where an adversary can introduce outliers by corrupting loss functions in an arbitrary number of k, unknown.
arXiv Detail & Related papers (2024-08-12T17:08:31Z) - Stable Nonconvex-Nonconcave Training via Linear Interpolation [51.668052890249726]
This paper presents a theoretical analysis of linearahead as a principled method for stabilizing (large-scale) neural network training.
We argue that instabilities in the optimization process are often caused by the nonmonotonicity of the loss landscape and show how linear can help by leveraging the theory of nonexpansive operators.
arXiv Detail & Related papers (2023-10-20T12:45:12Z) - Smoothed Online Convex Optimization Based on Discounted-Normal-Predictor [68.17855675511602]
We investigate an online prediction strategy named as Discounted-Normal-Predictor (Kapralov and Panigrahy, 2010) for smoothed online convex optimization (SOCO)
We show that the proposed algorithm can minimize the adaptive regret with switching cost in every interval.
arXiv Detail & Related papers (2022-05-02T08:48:22Z) - Adaptivity and Non-stationarity: Problem-dependent Dynamic Regret for Online Convex Optimization [70.4342220499858]
We introduce novel online algorithms that can exploit smoothness and replace the dependence on $T$ in dynamic regret with problem-dependent quantities.
Our results are adaptive to the intrinsic difficulty of the problem, since the bounds are tighter than existing results for easy problems and safeguard the same rate in the worst case.
arXiv Detail & Related papers (2021-12-29T02:42:59Z) - Stochastic Online Linear Regression: the Forward Algorithm to Replace
Ridge [24.880035784304834]
We derive high probability regret bounds for online ridge regression and the forward algorithm.
This enables us to compare online regression algorithms more accurately and eliminate assumptions of bounded observations and predictions.
arXiv Detail & Related papers (2021-11-02T13:57:53Z) - Optimal Dynamic Regret in Exp-Concave Online Learning [28.62891856368132]
We consider the problem of the Zinkevich (2003)-style dynamic regret minimization in online learning with exp-contrivial losses.
We show that whenever improper learning is allowed, a Strongly Adaptive online learner achieves the dynamic regret of $tilde O(d3.5n1/3C_n2/3 vee dlog n)$ where $C_n$ is the total variation (a.k.a. path length) of the an arbitrary sequence of comparators that may not be known to the learner ahead of time.
arXiv Detail & Related papers (2021-04-23T21:36:51Z) - Online nonparametric regression with Sobolev kernels [99.12817345416846]
We derive the regret upper bounds on the classes of Sobolev spaces $W_pbeta(mathcalX)$, $pgeq 2, beta>fracdp$.
The upper bounds are supported by the minimax regret analysis, which reveals that in the cases $beta> fracd2$ or $p=infty$ these rates are (essentially) optimal.
arXiv Detail & Related papers (2021-02-06T15:05:14Z) - Adaptive Online Estimation of Piecewise Polynomial Trends [23.91519151164528]
We consider the framework of non-stationary optimization with squared error losses and noisy gradient feedback.
Motivated from the theory of non-parametric regression, we introduce a new variational constraint.
We show that the same policy is minimax optimal for several other non-parametric families of interest.
arXiv Detail & Related papers (2020-09-30T19:30:28Z) - Dynamic Regret of Convex and Smooth Functions [93.71361250701075]
We investigate online convex optimization in non-stationary environments.
We choose the dynamic regret as the performance measure.
We show that it is possible to further enhance the dynamic regret by exploiting the smoothness condition.
arXiv Detail & Related papers (2020-07-07T14:10:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.