ViC: Virtual Compiler Is All You Need For Assembly Code Search
- URL: http://arxiv.org/abs/2408.06385v1
- Date: Sat, 10 Aug 2024 17:23:02 GMT
- Title: ViC: Virtual Compiler Is All You Need For Assembly Code Search
- Authors: Zeyu Gao, Hao Wang, Yuanda Wang, Chao Zhang,
- Abstract summary: This paper explores training a Large Language Model (LLM) to emulate a general compiler.
We further pre-train CodeLlama as a Virtual Compiler (ViC), capable of compiling any source code of any language to assembly code.
We achieve a substantial improvement in assembly code search performance, with our model surpassing the leading baseline by 26%.
- Score: 9.674880905252628
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Assembly code search is vital for reducing the burden on reverse engineers, allowing them to quickly identify specific functions using natural language within vast binary programs. Despite its significance, this critical task is impeded by the complexities involved in building high-quality datasets. This paper explores training a Large Language Model (LLM) to emulate a general compiler. By leveraging Ubuntu packages to compile a dataset of 20 billion tokens, we further continue pre-train CodeLlama as a Virtual Compiler (ViC), capable of compiling any source code of any language to assembly code. This approach allows for virtual compilation across a wide range of programming languages without the need for a real compiler, preserving semantic equivalency and expanding the possibilities for assembly code dataset construction. Furthermore, we use ViC to construct a sufficiently large dataset for assembly code search. Employing this extensive dataset, we achieve a substantial improvement in assembly code search performance, with our model surpassing the leading baseline by 26%.
Related papers
- Developing a Modular Compiler for a Subset of a C-like Language [0.0]
The paper introduces the development of a modular compiler for a subset of a C-like language.
This modular approach will allow developers to modify a language by adding or removing subsets as required, resulting in a minimal and memory-efficient compiler.
arXiv Detail & Related papers (2025-01-08T13:42:54Z) - CRUXEval-X: A Benchmark for Multilingual Code Reasoning, Understanding and Execution [50.7413285637879]
The CRUXEVAL-X code reasoning benchmark contains 19 programming languages.
It comprises at least 600 subjects for each language, along with 19K content-consistent tests in total.
Even a model trained solely on Python can achieve at most 34.4% Pass@1 in other languages.
arXiv Detail & Related papers (2024-08-23T11:43:00Z) - Meta Large Language Model Compiler: Foundation Models of Compiler Optimization [21.161784011956126]
Large Language Models (LLMs) have demonstrated remarkable capabilities across a variety of software engineering and coding tasks.
However, their application in the domain of code and compiler optimization remains underexplored.
We introduce Meta Large Language Model Compiler (LLM Compiler), a suite of robust, openly available, pre-trained models for code optimization tasks.
arXiv Detail & Related papers (2024-06-27T21:47:48Z) - IRCoder: Intermediate Representations Make Language Models Robust Multilingual Code Generators [49.903001442804594]
This work investigates the prospect of leveraging compiler intermediate representations (IR) to improve the multilingual capabilities of Code-LMs.
We first compile SLTrans, a parallel dataset consisting of nearly 4M self-contained source code files.
Next, we carry out continued causal language modelling training on SLTrans, forcing the Code-LMs to learn the IR language.
Our resulting models, dubbed IRCoder, display sizeable and consistent gains across a wide variety of code generation tasks and metrics.
arXiv Detail & Related papers (2024-03-06T17:52:08Z) - SparseCoder: Identifier-Aware Sparse Transformer for File-Level Code
Summarization [51.67317895094664]
This paper studies file-level code summarization, which can assist programmers in understanding and maintaining large source code projects.
We propose SparseCoder, an identifier-aware sparse transformer for effectively handling long code sequences.
arXiv Detail & Related papers (2024-01-26T09:23:27Z) - LILO: Learning Interpretable Libraries by Compressing and Documenting Code [71.55208585024198]
We introduce LILO, a neurosymbolic framework that iteratively synthesizes, compresses, and documents code.
LILO combines LLM-guided program synthesis with recent algorithmic advances in automated from Stitch.
We find that AutoDoc boosts performance by helping LILO's synthesizer to interpret and deploy learned abstractions.
arXiv Detail & Related papers (2023-10-30T17:55:02Z) - COMEX: A Tool for Generating Customized Source Code Representations [7.151800146054561]
COMEX is a framework that allows researchers and developers to create and combine multiple code-views.
It can analyze both method-level snippets and program-level snippets by using both intra-procedural and inter-procedural snippets.
It is built on tree-sitter - a widely used incremental analysis tool that supports over 40 languages.
arXiv Detail & Related papers (2023-07-10T16:46:34Z) - HDCC: A Hyperdimensional Computing compiler for classification on
embedded systems and high-performance computing [58.720142291102135]
This work introduces the name compiler, the first open-source compiler that translates high-level descriptions of HDC classification methods into optimized C code.
name is designed like a modern compiler, featuring an intuitive and descriptive input language, an intermediate representation (IR), and a retargetable backend.
To substantiate these claims, we conducted experiments with HDCC on several of the most popular datasets in the HDC literature.
arXiv Detail & Related papers (2023-04-24T19:16:03Z) - ReACC: A Retrieval-Augmented Code Completion Framework [53.49707123661763]
We propose a retrieval-augmented code completion framework, leveraging both lexical copying and referring to code with similar semantics by retrieval.
We evaluate our approach in the code completion task in Python and Java programming languages, achieving a state-of-the-art performance on CodeXGLUE benchmark.
arXiv Detail & Related papers (2022-03-15T08:25:08Z) - Compilable Neural Code Generation with Compiler Feedback [43.97362484564799]
This paper proposes a three-stage pipeline for compilable code generation, including language model fine-tuning, compilability reinforcement, and compilability discrimination.
Experiments on two code generation tasks demonstrate the effectiveness of our proposed approach, improving the success rate of compilation from 44.18 to 89.18 on average and from 70.3 to 96.2 in text-to-code generation, respectively.
arXiv Detail & Related papers (2022-03-10T03:15:17Z) - Improving type information inferred by decompilers with supervised
machine learning [0.0]
In software reverse engineering, decompilation is the process of recovering source code from binary files.
We build different classification models capable of inferring the high-level type returned by functions.
Our system is able to predict function return types with a 79.1% F1-measure, whereas the best decompiler obtains a 30% F1-measure.
arXiv Detail & Related papers (2021-01-19T11:45:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.