Fast John Ellipsoid Computation with Differential Privacy Optimization
- URL: http://arxiv.org/abs/2408.06395v1
- Date: Mon, 12 Aug 2024 03:47:55 GMT
- Title: Fast John Ellipsoid Computation with Differential Privacy Optimization
- Authors: Jiuxiang Gu, Xiaoyu Li, Yingyu Liang, Zhenmei Shi, Zhao Song, Junwei Yu,
- Abstract summary: We present the first differentially private algorithm for fast John ellipsoid computation.
Our method integrates noise perturbation with sketching and leverage score sampling to achieve both efficiency and privacy.
- Score: 34.437362489150246
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Determining the John ellipsoid - the largest volume ellipsoid contained within a convex polytope - is a fundamental problem with applications in machine learning, optimization, and data analytics. Recent work has developed fast algorithms for approximating the John ellipsoid using sketching and leverage score sampling techniques. However, these algorithms do not provide privacy guarantees for sensitive input data. In this paper, we present the first differentially private algorithm for fast John ellipsoid computation. Our method integrates noise perturbation with sketching and leverage score sampling to achieve both efficiency and privacy. We prove that (1) our algorithm provides $(\epsilon,\delta)$-differential privacy, and the privacy guarantee holds for neighboring datasets that are $\epsilon_0$-close, allowing flexibility in the privacy definition; (2) our algorithm still converges to a $(1+\xi)$-approximation of the optimal John ellipsoid in $O(\xi^{-2}(\log(n/\delta_0) + (L\epsilon_0)^{-2}))$ iterations where $n$ is the number of data point, $L$ is the Lipschitz constant, $\delta_0$ is the failure probability, and $\epsilon_0$ is the closeness of neighboring input datasets. Our theoretical analysis demonstrates the algorithm's convergence and privacy properties, providing a robust approach for balancing utility and privacy in John ellipsoid computation. This is the first differentially private algorithm for fast John ellipsoid computation, opening avenues for future research in privacy-preserving optimization techniques.
Related papers
- Perturb-and-Project: Differentially Private Similarities and Marginals [73.98880839337873]
We revisit the input perturbations framework for differential privacy where noise is added to the input $Ain mathcalS$.
We first design novel efficient algorithms to privately release pair-wise cosine similarities.
We derive a novel algorithm to compute $k$-way marginal queries over $n$ features.
arXiv Detail & Related papers (2024-06-07T12:07:16Z) - Private estimation algorithms for stochastic block models and mixture
models [63.07482515700984]
General tools for designing efficient private estimation algorithms.
First efficient $(epsilon, delta)$-differentially private algorithm for both weak recovery and exact recovery.
arXiv Detail & Related papers (2023-01-11T09:12:28Z) - Scalable Differentially Private Clustering via Hierarchically Separated
Trees [82.69664595378869]
We show that our method computes a solution with cost at most $O(d3/2log n)cdot OPT + O(k d2 log2 n / epsilon2)$, where $epsilon$ is the privacy guarantee.
Although the worst-case guarantee is worse than that of state of the art private clustering methods, the algorithm we propose is practical.
arXiv Detail & Related papers (2022-06-17T09:24:41Z) - Learning with User-Level Privacy [61.62978104304273]
We analyze algorithms to solve a range of learning tasks under user-level differential privacy constraints.
Rather than guaranteeing only the privacy of individual samples, user-level DP protects a user's entire contribution.
We derive an algorithm that privately answers a sequence of $K$ adaptively chosen queries with privacy cost proportional to $tau$, and apply it to solve the learning tasks we consider.
arXiv Detail & Related papers (2021-02-23T18:25:13Z) - Hiding Among the Clones: A Simple and Nearly Optimal Analysis of Privacy
Amplification by Shuffling [49.43288037509783]
We show that random shuffling amplifies differential privacy guarantees of locally randomized data.
Our result is based on a new approach that is simpler than previous work and extends to approximate differential privacy with nearly the same guarantees.
arXiv Detail & Related papers (2020-12-23T17:07:26Z) - Private Stochastic Convex Optimization: Optimal Rates in Linear Time [74.47681868973598]
We study the problem of minimizing the population loss given i.i.d. samples from a distribution over convex loss functions.
A recent work of Bassily et al. has established the optimal bound on the excess population loss achievable given $n$ samples.
We describe two new techniques for deriving convex optimization algorithms both achieving the optimal bound on excess loss and using $O(minn, n2/d)$ gradient computations.
arXiv Detail & Related papers (2020-05-10T19:52:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.