S-SAM: SVD-based Fine-Tuning of Segment Anything Model for Medical Image Segmentation
- URL: http://arxiv.org/abs/2408.06447v1
- Date: Mon, 12 Aug 2024 18:53:03 GMT
- Title: S-SAM: SVD-based Fine-Tuning of Segment Anything Model for Medical Image Segmentation
- Authors: Jay N. Paranjape, Shameema Sikder, S. Swaroop Vedula, Vishal M. Patel,
- Abstract summary: We propose an adaptation technique, called S-SAM, that only trains parameters equal to 0.4% of SAM's parameters and at the same time uses simply the label names as prompts for producing precise masks.
We call this modified version S-SAM and evaluate it on five different modalities including endoscopic images, x-ray, ultrasound, CT, and histology images.
- Score: 25.12190845061075
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Medical image segmentation has been traditionally approached by training or fine-tuning the entire model to cater to any new modality or dataset. However, this approach often requires tuning a large number of parameters during training. With the introduction of the Segment Anything Model (SAM) for prompted segmentation of natural images, many efforts have been made towards adapting it efficiently for medical imaging, thus reducing the training time and resources. However, these methods still require expert annotations for every image in the form of point prompts or bounding box prompts during training and inference, making it tedious to employ them in practice. In this paper, we propose an adaptation technique, called S-SAM, that only trains parameters equal to 0.4% of SAM's parameters and at the same time uses simply the label names as prompts for producing precise masks. This not only makes tuning SAM more efficient than the existing adaptation methods but also removes the burden of providing expert prompts. We call this modified version S-SAM and evaluate it on five different modalities including endoscopic images, x-ray, ultrasound, CT, and histology images. Our experiments show that S-SAM outperforms state-of-the-art methods as well as existing SAM adaptation methods while tuning a significantly less number of parameters. We release the code for S-SAM at https://github.com/JayParanjape/SVDSAM.
Related papers
- Improving Segment Anything on the Fly: Auxiliary Online Learning and Adaptive Fusion for Medical Image Segmentation [52.172885882728174]
In medical imaging contexts, it is not uncommon for human experts to rectify segmentations of specific test samples after SAM generates its segmentation predictions.
We introduce a novel approach that leverages the advantages of online machine learning to enhance Segment Anything (SA) during test time.
We employ rectified annotations to perform online learning, with the aim of improving the segmentation quality of SA on medical images.
arXiv Detail & Related papers (2024-06-03T03:16:25Z) - MA-SAM: Modality-agnostic SAM Adaptation for 3D Medical Image
Segmentation [58.53672866662472]
We introduce a modality-agnostic SAM adaptation framework, named as MA-SAM.
Our method roots in the parameter-efficient fine-tuning strategy to update only a small portion of weight increments.
By injecting a series of 3D adapters into the transformer blocks of the image encoder, our method enables the pre-trained 2D backbone to extract third-dimensional information from input data.
arXiv Detail & Related papers (2023-09-16T02:41:53Z) - SurgicalSAM: Efficient Class Promptable Surgical Instrument Segmentation [65.52097667738884]
We introduce SurgicalSAM, a novel end-to-end efficient-tuning approach for SAM to integrate surgical-specific information with SAM's pre-trained knowledge for improved generalisation.
Specifically, we propose a lightweight prototype-based class prompt encoder for tuning, which directly generates prompt embeddings from class prototypes.
In addition, to address the low inter-class variance among surgical instrument categories, we propose contrastive prototype learning.
arXiv Detail & Related papers (2023-08-17T02:51:01Z) - AdaptiveSAM: Towards Efficient Tuning of SAM for Surgical Scene
Segmentation [49.59991322513561]
We propose an adaptive modification of Segment-Anything (SAM) that can adjust to new datasets quickly and efficiently.
AdaptiveSAM uses free-form text as prompt and can segment the object of interest with just the label name as prompt.
Our experiments show that AdaptiveSAM outperforms current state-of-the-art methods on various medical imaging datasets.
arXiv Detail & Related papers (2023-08-07T17:12:54Z) - How to Efficiently Adapt Large Segmentation Model(SAM) to Medical Images [15.181219203629643]
Segment Anything (SAM) exhibits impressive capabilities in zero-shot segmentation for natural images.
However, when applied to medical images, SAM suffers from noticeable performance drop.
In this work, we propose to freeze SAM encoder and finetune a lightweight task-specific prediction head.
arXiv Detail & Related papers (2023-06-23T18:34:30Z) - Personalize Segment Anything Model with One Shot [52.54453744941516]
We propose a training-free Personalization approach for Segment Anything Model (SAM)
Given only a single image with a reference mask, PerSAM first localizes the target concept by a location prior.
PerSAM segments it within other images or videos via three techniques: target-guided attention, target-semantic prompting, and cascaded post-refinement.
arXiv Detail & Related papers (2023-05-04T17:59:36Z) - Customized Segment Anything Model for Medical Image Segmentation [10.933449793055313]
We build upon the large-scale image segmentation model, Segment Anything Model (SAM), to explore the new research paradigm of customizing large-scale models for medical image segmentation.
SAMed applies the low-rank-based (LoRA) finetuning strategy to the SAM image encoder and finetunes it together with the prompt encoder and the mask decoder on labeled medical image segmentation datasets.
Our trained SAMed model achieves semantic segmentation on medical images, which is on par with the state-of-the-art methods.
arXiv Detail & Related papers (2023-04-26T19:05:34Z) - Medical SAM Adapter: Adapting Segment Anything Model for Medical Image
Segmentation [51.770805270588625]
The Segment Anything Model (SAM) has recently gained popularity in the field of image segmentation.
Recent studies and individual experiments have shown that SAM underperforms in medical image segmentation.
We propose the Medical SAM Adapter (Med-SA), which incorporates domain-specific medical knowledge into the segmentation model.
arXiv Detail & Related papers (2023-04-25T07:34:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.