How to Efficiently Adapt Large Segmentation Model(SAM) to Medical Images
- URL: http://arxiv.org/abs/2306.13731v1
- Date: Fri, 23 Jun 2023 18:34:30 GMT
- Title: How to Efficiently Adapt Large Segmentation Model(SAM) to Medical Images
- Authors: Xinrong Hu, Xiaowei Xu, and Yiyu Shi
- Abstract summary: Segment Anything (SAM) exhibits impressive capabilities in zero-shot segmentation for natural images.
However, when applied to medical images, SAM suffers from noticeable performance drop.
In this work, we propose to freeze SAM encoder and finetune a lightweight task-specific prediction head.
- Score: 15.181219203629643
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The emerging scale segmentation model, Segment Anything (SAM), exhibits
impressive capabilities in zero-shot segmentation for natural images. However,
when applied to medical images, SAM suffers from noticeable performance drop.
To make SAM a real ``foundation model" for the computer vision community, it is
critical to find an efficient way to customize SAM for medical image dataset.
In this work, we propose to freeze SAM encoder and finetune a lightweight
task-specific prediction head, as most of weights in SAM are contributed by the
encoder. In addition, SAM is a promptable model, while prompt is not
necessarily available in all application cases, and precise prompts for
multiple class segmentation are also time-consuming. Therefore, we explore
three types of prompt-free prediction heads in this work, include ViT, CNN, and
linear layers. For ViT head, we remove the prompt tokens in the mask decoder of
SAM, which is named AutoSAM. AutoSAM can also generate masks for different
classes with one single inference after modification. To evaluate the
label-efficiency of our finetuning method, we compare the results of these
three prediction heads on a public medical image segmentation dataset with
limited labeled data. Experiments demonstrate that finetuning SAM significantly
improves its performance on medical image dataset, even with just one labeled
volume. Moreover, AutoSAM and CNN prediction head also has better segmentation
accuracy than training from scratch and self-supervised learning approaches
when there is a shortage of annotations.
Related papers
- MAS-SAM: Segment Any Marine Animal with Aggregated Features [55.91291540810978]
We propose a novel feature learning framework named MAS-SAM for marine animal segmentation.
Our method enables to extract richer marine information from global contextual cues to fine-grained local details.
arXiv Detail & Related papers (2024-04-24T07:38:14Z) - Unleashing the Potential of SAM for Medical Adaptation via Hierarchical Decoding [15.401507589312702]
This paper introduces H-SAM, a prompt-free adaptation of the Segment Anything Model (SAM) for efficient fine-tuning of medical images.
In the initial stage, H-SAM employs SAM's original decoder to generate a prior probabilistic mask, guiding a more intricate decoding process.
Our H-SAM demonstrates a 4.78% improvement in average Dice compared to existing prompt-free SAM variants.
arXiv Detail & Related papers (2024-03-27T05:55:16Z) - MaskSAM: Towards Auto-prompt SAM with Mask Classification for Medical Image Segmentation [18.125292369318576]
MaskSAM is a mask classification prompt-free adaptation framework for medical image segmentation.
Our method achieves state-of-the-art performance on AMOS2022, 90.52% Dice, which improved by 2.7% compared to nnUNet.
arXiv Detail & Related papers (2024-03-21T03:28:24Z) - WSI-SAM: Multi-resolution Segment Anything Model (SAM) for histopathology whole-slide images [8.179859593451285]
We present WSI-SAM, enhancing Segment Anything Model (SAM) with precise object segmentation capabilities for histopathology images.
To fully exploit pretrained knowledge while minimizing training overhead, we keep SAM frozen, introducing only minimal extra parameters.
Our model outperforms SAM by 4.1 and 2.5 percent points on a ductal carcinoma in situ (DCIS) segmentation tasks and breast cancer metastasis segmentation task.
arXiv Detail & Related papers (2024-03-14T10:30:43Z) - Guided Prompting in SAM for Weakly Supervised Cell Segmentation in
Histopathological Images [27.14641973632063]
This paper focuses on using weak supervision -- annotation from related tasks -- to induce a segmenter.
Recent foundation models, such as Segment Anything (SAM), can use prompts to leverage additional supervision during inference.
All SAM-based solutions hugely outperform existing weakly supervised image segmentation models, obtaining 9-15 pt Dice gains.
arXiv Detail & Related papers (2023-11-29T11:18:48Z) - Stable Segment Anything Model [79.9005670886038]
The Segment Anything Model (SAM) achieves remarkable promptable segmentation given high-quality prompts.
This paper presents the first comprehensive analysis on SAM's segmentation stability across a diverse spectrum of prompt qualities.
Our solution, termed Stable-SAM, offers several advantages: 1) improved SAM's segmentation stability across a wide range of prompt qualities, while 2) retaining SAM's powerful promptable segmentation efficiency and generality.
arXiv Detail & Related papers (2023-11-27T12:51:42Z) - MA-SAM: Modality-agnostic SAM Adaptation for 3D Medical Image
Segmentation [58.53672866662472]
We introduce a modality-agnostic SAM adaptation framework, named as MA-SAM.
Our method roots in the parameter-efficient fine-tuning strategy to update only a small portion of weight increments.
By injecting a series of 3D adapters into the transformer blocks of the image encoder, our method enables the pre-trained 2D backbone to extract third-dimensional information from input data.
arXiv Detail & Related papers (2023-09-16T02:41:53Z) - AutoSAM: Adapting SAM to Medical Images by Overloading the Prompt
Encoder [101.28268762305916]
In this work, we replace Segment Anything Model with an encoder that operates on the same input image.
We obtain state-of-the-art results on multiple medical images and video benchmarks.
For inspecting the knowledge within it, and providing a lightweight segmentation solution, we also learn to decode it into a mask by a shallow deconvolution network.
arXiv Detail & Related papers (2023-06-10T07:27:00Z) - Segment Anything in High Quality [116.39405160133315]
We propose HQ-SAM, equipping SAM with the ability to accurately segment any object, while maintaining SAM's original promptable design, efficiency, and zero-shot generalizability.
Our careful design reuses and preserves the pre-trained model weights of SAM, while only introducing minimal additional parameters and computation.
We show the efficacy of HQ-SAM in a suite of 10 diverse segmentation datasets across different downstream tasks, where 8 out of them are evaluated in a zero-shot transfer protocol.
arXiv Detail & Related papers (2023-06-02T14:23:59Z) - Personalize Segment Anything Model with One Shot [52.54453744941516]
We propose a training-free Personalization approach for Segment Anything Model (SAM)
Given only a single image with a reference mask, PerSAM first localizes the target concept by a location prior.
PerSAM segments it within other images or videos via three techniques: target-guided attention, target-semantic prompting, and cascaded post-refinement.
arXiv Detail & Related papers (2023-05-04T17:59:36Z) - Customized Segment Anything Model for Medical Image Segmentation [10.933449793055313]
We build upon the large-scale image segmentation model, Segment Anything Model (SAM), to explore the new research paradigm of customizing large-scale models for medical image segmentation.
SAMed applies the low-rank-based (LoRA) finetuning strategy to the SAM image encoder and finetunes it together with the prompt encoder and the mask decoder on labeled medical image segmentation datasets.
Our trained SAMed model achieves semantic segmentation on medical images, which is on par with the state-of-the-art methods.
arXiv Detail & Related papers (2023-04-26T19:05:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.