論文の概要: TOGGL: Transcribing Overlapping Speech with Staggered Labeling
- arxiv url: http://arxiv.org/abs/2408.06474v1
- Date: Mon, 12 Aug 2024 20:19:27 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-14 19:17:34.805336
- Title: TOGGL: Transcribing Overlapping Speech with Staggered Labeling
- Title(参考訳): TOGGL: ラベル付きラベリングで重なり合う音声を翻訳する
- Authors: Chak-Fai Li, William Hartmann, Matthew Snover,
- Abstract要約: 複数話者の音声を同時に書き起こすモデルを提案する。
提案手法は,2話者データのみを訓練しても,2話者以上を一般化する。
- 参考スコア(独自算出の注目度): 5.088540556965433
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Transcribing the speech of multiple overlapping speakers typically requires separating the audio into multiple streams and recognizing each one independently. More recent work jointly separates and transcribes, but requires a separate decoding component for each speaker. We propose the TOGGL model to simultaneously transcribe the speech of multiple speakers. The TOGGL model uses special output tokens to attribute the speech to each speaker with only a single decoder. Our approach generalizes beyond two speakers, even when trained only on two-speaker data. We demonstrate superior performance compared to competing approaches on a conversational speech dataset. Our approach also improves performance on single-speaker audio.
- Abstract(参考訳): 複数の重なり合う話者の音声を翻訳するには、通常、音声を複数のストリームに分離し、それぞれを独立して認識する必要がある。
より最近の作業では、共同で分離し、書き起こしを行うが、各話者に対して別のデコードコンポーネントが必要である。
複数の話者の音声を同時に書き起こすTOGGLモデルを提案する。
TOGGLモデルは特別な出力トークンを使用して、音声を1つのデコーダだけで各話者に属性付けする。
提案手法は,2話者データのみを訓練しても,2話者以上を一般化する。
会話音声データセットにおける競合するアプローチと比較して,優れた性能を示す。
また,本手法は単一話者音声の性能向上にも寄与する。
関連論文リスト
- Speaker Mask Transformer for Multi-talker Overlapped Speech Recognition [27.35304346509647]
話者ラベルを自己回帰変換器に基づく音声認識モデルに導入する。
次に、個々の話者の音声セグメントを検出するための新しい話者マスク分岐を提案する。
提案モデルでは,音声認識と話者ダイアリゼーションの両方を同時に行うことができる。
論文 参考訳(メタデータ) (2023-12-18T06:29:53Z) - End-to-End Single-Channel Speaker-Turn Aware Conversational Speech
Translation [23.895122319920997]
エンド・ツー・エンドおよびマルチタスク・トレーニングモデルを用いて、単一チャンネルのマルチ話者会話STに取り組む。
Speaker-Turn Aware Conversational Speech Translationは、音声認識、音声翻訳、話者のターン検出を組み合わせる。
本研究では,本モデルがマルチスピーカ条件で参照システムより優れ,単一スピーカ条件で同等の性能が得られることを示す。
論文 参考訳(メタデータ) (2023-11-01T17:55:09Z) - TokenSplit: Using Discrete Speech Representations for Direct, Refined,
and Transcript-Conditioned Speech Separation and Recognition [51.565319173790314]
TokenSplit は Transformer アーキテクチャを使用するシーケンス・ツー・シーケンス・エンコーダ・デコーダモデルである。
また,本モデルでは,書き起こし条件付けの有無にかかわらず,分離の点で優れた性能を発揮することを示す。
また、自動音声認識(ASR)の性能を測定し、音声合成の音声サンプルを提供し、我々のモデルの有用性を実証する。
論文 参考訳(メタデータ) (2023-08-21T01:52:01Z) - Streaming Speaker-Attributed ASR with Token-Level Speaker Embeddings [53.11450530896623]
本稿では,「誰が何を話したか」を認識可能な,ストリーミング話者対応自動音声認識(SA-ASR)モデルを提案する。
本モデルは,最近提案されたマルチトーカー音声をストリーミング形式で書き起こすためのトークンレベルシリアライズアウトプットトレーニング(t-SOT)に基づいている。
提案モデルでは,従来のストリーミングモデルよりも精度が大幅に向上し,最先端のオフラインSA-ASRモデルに匹敵する,あるいは時として優れた結果が得られる。
論文 参考訳(メタデータ) (2022-03-30T21:42:00Z) - Investigating on Incorporating Pretrained and Learnable Speaker
Representations for Multi-Speaker Multi-Style Text-to-Speech [54.75722224061665]
本研究では,異なる話者表現を調査し,事前学習可能な話者表現を統合することを提案する。
FastSpeech 2モデルと事前訓練された話者表現と学習可能な話者表現を組み合わせることで、少数の話者に対して大きな一般化能力を示す。
論文 参考訳(メタデータ) (2021-03-06T10:14:33Z) - Joint Speaker Counting, Speech Recognition, and Speaker Identification
for Overlapped Speech of Any Number of Speakers [38.3469744871394]
エンドツーエンドの話者分散音声認識モデルを提案する。
重複した音声における話者カウント、音声認識、話者識別を統一する。
論文 参考訳(メタデータ) (2020-06-19T02:05:18Z) - Semi-supervised Learning for Multi-speaker Text-to-speech Synthesis
Using Discrete Speech Representation [125.59372403631006]
マルチ話者テキスト音声(TTS)のための半教師付き学習手法を提案する。
マルチスピーカTTSモデルは、離散音声表現を備えたエンコーダデコーダフレームワークを用いて、未転写音声から学習することができる。
提案した半教師あり学習手法は,音声データの一部がうるさい場合にも有効であることがわかった。
論文 参考訳(メタデータ) (2020-05-16T15:47:11Z) - Voice Separation with an Unknown Number of Multiple Speakers [113.91855071999298]
本稿では,複数の音声が同時に発声する混合音声系列を分離する手法を提案する。
新たな手法では、複数の処理ステップで音声を分離するように訓練されたゲートニューラルネットワークを使用し、各出力チャネルに固定された話者を維持する。
論文 参考訳(メタデータ) (2020-02-29T20:02:54Z) - Unsupervised Audiovisual Synthesis via Exemplar Autoencoders [59.13989658692953]
我々は,任意の個人の入力音声を,潜在的に無限に多くの出力スピーカのオーディオ視覚ストリームに変換する教師なしのアプローチを提案する。
我々は、Exemplar Autoencodersを用いて、特定のターゲット音声の音声、スタイリスティックな韻律、視覚的外観を学習する。
論文 参考訳(メタデータ) (2020-01-13T18:56:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。