Implicit Neural Representation For Accurate CFD Flow Field Prediction
- URL: http://arxiv.org/abs/2408.06486v1
- Date: Mon, 12 Aug 2024 20:41:07 GMT
- Title: Implicit Neural Representation For Accurate CFD Flow Field Prediction
- Authors: Laurent de Vito, Nils Pinnau, Simone Dey,
- Abstract summary: We present a deep learning framework for 3D flow field prediction applied to blades of aircraft engine turbines and compressors.
We view any 3D field as a function from coordinates modeled by a neural network we call the backbone-net.
It can accurately render important flow characteristics such as boundary layers, wakes and shock waves.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Despite the plethora of deep learning frameworks for flow field prediction, most of them deal with flow fields on regular domains, and although the best ones can cope with irregular domains, they mostly rely on graph networks, so that real industrial applications remain currently elusive. We present a deep learning framework for 3D flow field prediction applied to blades of aircraft engine turbines and compressors. Crucially, we view any 3D field as a function from coordinates that is modeled by a neural network we call the backbone-net. It inherits the property of coordinate-based MLPs, namely the discretization-agnostic representation of flow fields in domains of arbitrary topology at infinite resolution. First, we demonstrate the performance of the backbone-net solo in regressing 3D steady simulations of single blade rows in various flow regimes: it can accurately render important flow characteristics such as boundary layers, wakes and shock waves. Second, we introduce a hyper-net that maps the surface mesh of a blade to the parameters of the backbone-net. By doing so, the flow solution can be directly predicted from the blade geometry, irrespective of its parameterization. Together, backbone-net and hyper-net form a highly-accurate memory-efficient data-driven proxy to CFD solvers with good generalization on unseen geometries.
Related papers
- SpaceMesh: A Continuous Representation for Learning Manifold Surface Meshes [61.110517195874074]
We present a scheme to directly generate manifold, polygonal meshes of complex connectivity as the output of a neural network.
Our key innovation is to define a continuous latent connectivity space at each mesh, which implies the discrete mesh.
In applications, this approach not only yields high-quality outputs from generative models, but also enables directly learning challenging geometry processing tasks such as mesh repair.
arXiv Detail & Related papers (2024-09-30T17:59:03Z) - Aero-Nef: Neural Fields for Rapid Aircraft Aerodynamics Simulations [1.1932047172700866]
This paper presents a methodology to learn surrogate models of steady state fluid dynamics simulations on meshed domains.
The proposed models can be applied directly to unstructured domains for different flow conditions.
Remarkably, the method can perform inference five order of magnitude faster than the high fidelity solver on the RANS transonic airfoil dataset.
arXiv Detail & Related papers (2024-07-29T11:48:44Z) - Boosting Cross-Domain Point Classification via Distilling Relational Priors from 2D Transformers [59.0181939916084]
Traditional 3D networks mainly focus on local geometric details and ignore the topological structure between local geometries.
We propose a novel Priors Distillation (RPD) method to extract priors from the well-trained transformers on massive images.
Experiments on the PointDA-10 and the Sim-to-Real datasets verify that the proposed method consistently achieves the state-of-the-art performance of UDA for point cloud classification.
arXiv Detail & Related papers (2024-07-26T06:29:09Z) - Flatten Anything: Unsupervised Neural Surface Parameterization [76.4422287292541]
We introduce the Flatten Anything Model (FAM), an unsupervised neural architecture to achieve global free-boundary surface parameterization.
Compared with previous methods, our FAM directly operates on discrete surface points without utilizing connectivity information.
Our FAM is fully-automated without the need for pre-cutting and can deal with highly-complex topologies.
arXiv Detail & Related papers (2024-05-23T14:39:52Z) - Identification of vortex in unstructured mesh with graph neural networks [0.0]
We present a Graph Neural Network (GNN) based model with U-Net architecture to identify the vortex in CFD results on unstructured meshes.
A vortex auto-labeling method is proposed to label vortex regions in 2D CFD meshes.
arXiv Detail & Related papers (2023-11-11T12:10:16Z) - Flattening-Net: Deep Regular 2D Representation for 3D Point Cloud
Analysis [66.49788145564004]
We present an unsupervised deep neural architecture called Flattening-Net to represent irregular 3D point clouds of arbitrary geometry and topology.
Our methods perform favorably against the current state-of-the-art competitors.
arXiv Detail & Related papers (2022-12-17T15:05:25Z) - Deep Implicit Surface Point Prediction Networks [49.286550880464866]
Deep neural representations of 3D shapes as implicit functions have been shown to produce high fidelity models.
This paper presents a novel approach that models such surfaces using a new class of implicit representations called the closest surface-point (CSP) representation.
arXiv Detail & Related papers (2021-06-10T14:31:54Z) - Direct Prediction of Steady-State Flow Fields in Meshed Domain with
Graph Networks [0.0]
We propose a model to directly predict the steady-state flow field for a given geometry setup.
The benefit of our model is a strong understanding of the global physical system, while being able to explore the local structure.
arXiv Detail & Related papers (2021-05-06T10:35:54Z) - Multi-Scale Neural Networks for to Fluid Flow in 3D Porous Media [0.0]
We develop a general multiscale deep learning model that is able to learn from porous media simulation data.
We enable the evaluation of large images in approximately one second on a single Graphics Processing Unit.
arXiv Detail & Related papers (2021-02-10T23:38:36Z) - A Point-Cloud Deep Learning Framework for Prediction of Fluid Flow
Fields on Irregular Geometries [62.28265459308354]
Network learns end-to-end mapping between spatial positions and CFD quantities.
Incompress laminar steady flow past a cylinder with various shapes for its cross section is considered.
Network predicts the flow fields hundreds of times faster than our conventional CFD.
arXiv Detail & Related papers (2020-10-15T12:15:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.