Prompt Recovery for Image Generation Models: A Comparative Study of Discrete Optimizers
- URL: http://arxiv.org/abs/2408.06502v1
- Date: Mon, 12 Aug 2024 21:35:59 GMT
- Title: Prompt Recovery for Image Generation Models: A Comparative Study of Discrete Optimizers
- Authors: Joshua Nathaniel Williams, Avi Schwarzschild, J. Zico Kolter,
- Abstract summary: We present the first head-to-head comparison of recent discrete optimization techniques for the problem of prompt inversion.
We find that focusing on the CLIP similarity between the inverted prompts and the ground truth image acts as a poor proxy for the similarity between ground truth image and the image generated by the inverted prompts.
- Score: 58.50071292008407
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recovering natural language prompts for image generation models, solely based on the generated images is a difficult discrete optimization problem. In this work, we present the first head-to-head comparison of recent discrete optimization techniques for the problem of prompt inversion. We evaluate Greedy Coordinate Gradients (GCG), PEZ , Random Search, AutoDAN and BLIP2's image captioner across various evaluation metrics related to the quality of inverted prompts and the quality of the images generated by the inverted prompts. We find that focusing on the CLIP similarity between the inverted prompts and the ground truth image acts as a poor proxy for the similarity between ground truth image and the image generated by the inverted prompts. While the discrete optimizers effectively minimize their objectives, simply using responses from a well-trained captioner often leads to generated images that more closely resemble those produced by the original prompts.
Related papers
- Optimizing CLIP Models for Image Retrieval with Maintained Joint-Embedding Alignment [0.7499722271664144]
Contrastive Language and Image Pairing (CLIP) is a transformative method in multimedia retrieval.
CLIP typically trains two neural networks concurrently to generate joint embeddings for text and image pairs.
This paper addresses the challenge of optimizing CLIP models for various image-based similarity search scenarios.
arXiv Detail & Related papers (2024-09-03T14:33:01Z) - FRAP: Faithful and Realistic Text-to-Image Generation with Adaptive Prompt Weighting [18.708185548091716]
FRAP is a simple, yet effective approach based on adaptively adjusting the per-token prompt weights to improve prompt-image alignment and authenticity of the generated images.
We show FRAP generates images with significantly higher prompt-image alignment to prompts from complex datasets.
We also explore combining FRAP with prompt rewriting LLM to recover their degraded prompt-image alignment.
arXiv Detail & Related papers (2024-08-21T15:30:35Z) - Batch-Instructed Gradient for Prompt Evolution:Systematic Prompt Optimization for Enhanced Text-to-Image Synthesis [3.783530340696776]
This study proposes a Multi-Agent framework to optimize input prompts for text-to-image generation models.
A professional prompts database serves as a benchmark to guide the instruction modifier towards generating high-caliber prompts.
Preliminary ablation studies highlight the effectiveness of various system components and suggest areas for future improvements.
arXiv Detail & Related papers (2024-06-13T00:33:29Z) - Iterative Prompt Learning for Unsupervised Backlit Image Enhancement [86.90993077000789]
We propose a novel unsupervised backlit image enhancement method, abbreviated as CLIP-LIT.
We show that the open-world CLIP prior aids in distinguishing between backlit and well-lit images.
Our method alternates between updating the prompt learning framework and enhancement network until visually pleasing results are achieved.
arXiv Detail & Related papers (2023-03-30T17:37:14Z) - DynaST: Dynamic Sparse Transformer for Exemplar-Guided Image Generation [56.514462874501675]
We propose a dynamic sparse attention based Transformer model to achieve fine-level matching with favorable efficiency.
The heart of our approach is a novel dynamic-attention unit, dedicated to covering the variation on the optimal number of tokens one position should focus on.
Experiments on three applications, pose-guided person image generation, edge-based face synthesis, and undistorted image style transfer, demonstrate that DynaST achieves superior performance in local details.
arXiv Detail & Related papers (2022-07-13T11:12:03Z) - Hierarchical Text-Conditional Image Generation with CLIP Latents [20.476720970770128]
We show that explicitly generating image representations improves image diversity with minimal loss in photorealism and caption similarity.
Our decoders conditioned on image representations can also produce variations of an image that preserve both its semantics and style.
arXiv Detail & Related papers (2022-04-13T01:10:33Z) - IR-GAN: Image Manipulation with Linguistic Instruction by Increment
Reasoning [110.7118381246156]
Increment Reasoning Generative Adversarial Network (IR-GAN) aims to reason consistency between visual increment in images and semantic increment in instructions.
First, we introduce the word-level and instruction-level instruction encoders to learn user's intention from history-correlated instructions as semantic increment.
Second, we embed the representation of semantic increment into that of source image for generating target image, where source image plays the role of referring auxiliary.
arXiv Detail & Related papers (2022-04-02T07:48:39Z) - Ensembling with Deep Generative Views [72.70801582346344]
generative models can synthesize "views" of artificial images that mimic real-world variations, such as changes in color or pose.
Here, we investigate whether such views can be applied to real images to benefit downstream analysis tasks such as image classification.
We use StyleGAN2 as the source of generative augmentations and investigate this setup on classification tasks involving facial attributes, cat faces, and cars.
arXiv Detail & Related papers (2021-04-29T17:58:35Z) - Perceptual Image Restoration with High-Quality Priori and Degradation
Learning [28.93489249639681]
We show that our model performs well in measuring the similarity between restored and degraded images.
Our simultaneous restoration and enhancement framework generalizes well to real-world complicated degradation types.
arXiv Detail & Related papers (2021-03-04T13:19:50Z) - Deep Variational Network Toward Blind Image Restoration [60.45350399661175]
Blind image restoration is a common yet challenging problem in computer vision.
We propose a novel blind image restoration method, aiming to integrate both the advantages of them.
Experiments on two typical blind IR tasks, namely image denoising and super-resolution, demonstrate that the proposed method achieves superior performance over current state-of-the-arts.
arXiv Detail & Related papers (2020-08-25T03:30:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.