Learned Ranking Function: From Short-term Behavior Predictions to Long-term User Satisfaction
- URL: http://arxiv.org/abs/2408.06512v1
- Date: Mon, 12 Aug 2024 22:02:39 GMT
- Title: Learned Ranking Function: From Short-term Behavior Predictions to Long-term User Satisfaction
- Authors: Yi Wu, Daryl Chang, Jennifer She, Zhe Zhao, Li Wei, Lukasz Heldt,
- Abstract summary: We present the Learned Ranking Function (LRF), a system that takes short-term user-item behavior predictions as input and outputs a slate of recommendations.
We propose to model the problem directly as a slate optimization problem with the objective of maximizing long-term user satisfaction.
- Score: 11.109665449393738
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present the Learned Ranking Function (LRF), a system that takes short-term user-item behavior predictions as input and outputs a slate of recommendations that directly optimizes for long-term user satisfaction. Most previous work is based on optimizing the hyperparameters of a heuristic function. We propose to model the problem directly as a slate optimization problem with the objective of maximizing long-term user satisfaction. We also develop a novel constraint optimization algorithm that stabilizes objective trade-offs for multi-objective optimization. We evaluate our approach with live experiments and describe its deployment on YouTube.
Related papers
- Discovering Preference Optimization Algorithms with and for Large Language Models [50.843710797024805]
offline preference optimization is a key method for enhancing and controlling the quality of Large Language Model (LLM) outputs.
We perform objective discovery to automatically discover new state-of-the-art preference optimization algorithms without (expert) human intervention.
Experiments demonstrate the state-of-the-art performance of DiscoPOP, a novel algorithm that adaptively blends logistic and exponential losses.
arXiv Detail & Related papers (2024-06-12T16:58:41Z) - Deterministic Langevin Unconstrained Optimization with Normalizing Flows [3.988614978933934]
We introduce a global, free surrogate optimization strategy for black-box functions inspired by the Fokker-Planck and Langevin equations.
We demonstrate superior competitive progress toward objective optima on standard synthetic test functions.
arXiv Detail & Related papers (2023-10-01T17:46:20Z) - MONGOOSE: Path-wise Smooth Bayesian Optimisation via Meta-learning [29.97648417539237]
A primary contributor to the cost of evaluating black-box objective functions is often the effort required to prepare the system for measurement.
We consider a common scenario where preparation costs grow as the distance between successive evaluations increases.
Our algorithm, MONGOOSE, uses a meta-learnt parametric policy to generate smooth optimisation trajectories.
arXiv Detail & Related papers (2023-02-22T18:20:36Z) - Generalizing Bayesian Optimization with Decision-theoretic Entropies [102.82152945324381]
We consider a generalization of Shannon entropy from work in statistical decision theory.
We first show that special cases of this entropy lead to popular acquisition functions used in BO procedures.
We then show how alternative choices for the loss yield a flexible family of acquisition functions.
arXiv Detail & Related papers (2022-10-04T04:43:58Z) - Meta-Wrapper: Differentiable Wrapping Operator for User Interest
Selection in CTR Prediction [97.99938802797377]
Click-through rate (CTR) prediction, whose goal is to predict the probability of the user to click on an item, has become increasingly significant in recommender systems.
Recent deep learning models with the ability to automatically extract the user interest from his/her behaviors have achieved great success.
We propose a novel approach under the framework of the wrapper method, which is named Meta-Wrapper.
arXiv Detail & Related papers (2022-06-28T03:28:15Z) - SnAKe: Bayesian Optimization with Pathwise Exploration [9.807656882149319]
We consider a novel setting where the expense of evaluating the function can increase significantly when making large input changes between iterations.
This paper investigates the problem and introduces 'Sequential Bayesian Optimization via Adaptive Connecting Samples' (SnAKe)
It provides a solution by considering future queries and preemptively building optimization paths that minimize input costs.
arXiv Detail & Related papers (2022-01-31T19:42:56Z) - RoMA: Robust Model Adaptation for Offline Model-based Optimization [115.02677045518692]
We consider the problem of searching an input maximizing a black-box objective function given a static dataset of input-output queries.
A popular approach to solving this problem is maintaining a proxy model that approximates the true objective function.
Here, the main challenge is how to avoid adversarially optimized inputs during the search.
arXiv Detail & Related papers (2021-10-27T05:37:12Z) - The Perils of Learning Before Optimizing [16.97597806975415]
We show how prediction models can be learned end-to-end by differentiating through the optimization task.
We show that the performance gap between a two-stage and end-to-end approach is closely related to the emphprice of correlation concept in optimization.
arXiv Detail & Related papers (2021-06-18T20:43:47Z) - Are we Forgetting about Compositional Optimisers in Bayesian
Optimisation? [66.39551991177542]
This paper presents a sample methodology for global optimisation.
Within this, a crucial performance-determiningtrivial is maximising the acquisition function.
We highlight the empirical advantages of the approach to optimise functionation across 3958 individual experiments.
arXiv Detail & Related papers (2020-12-15T12:18:38Z) - Fast Rates for Contextual Linear Optimization [52.39202699484225]
We show that a naive plug-in approach achieves regret convergence rates that are significantly faster than methods that directly optimize downstream decision performance.
Our results are overall positive for practice: predictive models are easy and fast to train using existing tools, simple to interpret, and, as we show, lead to decisions that perform very well.
arXiv Detail & Related papers (2020-11-05T18:43:59Z) - Composition of kernel and acquisition functions for High Dimensional
Bayesian Optimization [0.1749935196721634]
We use the addition-ality of the objective function into mapping both the kernel and the acquisition function of the Bayesian Optimization.
This ap-proach makes more efficient the learning/updating of the probabilistic surrogate model.
Results are presented for real-life application, that is the control of pumps in urban water distribution systems.
arXiv Detail & Related papers (2020-03-09T15:45:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.