SnAKe: Bayesian Optimization with Pathwise Exploration
- URL: http://arxiv.org/abs/2202.00060v1
- Date: Mon, 31 Jan 2022 19:42:56 GMT
- Title: SnAKe: Bayesian Optimization with Pathwise Exploration
- Authors: Jose Pablo Folch, Shiqiang Zhang, Robert M Lee, Behrang Shafei, David
Walz, Calvin Tsay, Mark van der Wilk, Ruth Misener
- Abstract summary: We consider a novel setting where the expense of evaluating the function can increase significantly when making large input changes between iterations.
This paper investigates the problem and introduces 'Sequential Bayesian Optimization via Adaptive Connecting Samples' (SnAKe)
It provides a solution by considering future queries and preemptively building optimization paths that minimize input costs.
- Score: 9.807656882149319
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Bayesian Optimization is a very effective tool for optimizing expensive
black-box functions. Inspired by applications developing and characterizing
reaction chemistry using droplet microfluidic reactors, we consider a novel
setting where the expense of evaluating the function can increase significantly
when making large input changes between iterations. We further assume we are
working asynchronously, meaning we have to decide on new queries before we
finish evaluating previous experiments. This paper investigates the problem and
introduces 'Sequential Bayesian Optimization via Adaptive Connecting Samples'
(SnAKe), which provides a solution by considering future queries and
preemptively building optimization paths that minimize input costs. We
investigate some convergence properties and empirically show that the algorithm
is able to achieve regret similar to classical Bayesian Optimization algorithms
in both the synchronous and asynchronous settings, while reducing the input
costs significantly.
Related papers
- Cost-aware Bayesian Optimization via the Pandora's Box Gittins Index [57.045952766988925]
We develop a previously-unexplored connection between cost-aware Bayesian optimization and the Pandora's Box problem, a decision problem from economics.
Our work constitutes a first step towards integrating techniques from Gittins index theory into Bayesian optimization.
arXiv Detail & Related papers (2024-06-28T17:20:13Z) - Discovering Preference Optimization Algorithms with and for Large Language Models [50.843710797024805]
offline preference optimization is a key method for enhancing and controlling the quality of Large Language Model (LLM) outputs.
We perform objective discovery to automatically discover new state-of-the-art preference optimization algorithms without (expert) human intervention.
Experiments demonstrate the state-of-the-art performance of DiscoPOP, a novel algorithm that adaptively blends logistic and exponential losses.
arXiv Detail & Related papers (2024-06-12T16:58:41Z) - Principled Preferential Bayesian Optimization [22.269732173306192]
We study the problem of preferential Bayesian optimization (BO)
We aim to optimize a black-box function with only preference feedback over a pair of candidate solutions.
An optimistic algorithm with an efficient computational method is then developed to solve the problem.
arXiv Detail & Related papers (2024-02-08T02:57:47Z) - Data-driven Prior Learning for Bayesian Optimisation [5.199765487172328]
We show that PLeBO and prior transfer find good inputs in fewer evaluations.
We validate the learned priors and compare to a breadth of transfer learning approaches.
We show that PLeBO and prior transfer find good inputs in fewer evaluations.
arXiv Detail & Related papers (2023-11-24T18:37:52Z) - Parallel Bayesian Optimization Using Satisficing Thompson Sampling for
Time-Sensitive Black-Box Optimization [0.0]
We propose satisficing Thompson sampling-based parallel BO approaches, including synchronous and asynchronous versions.
We shift the target from an optimal solution to a satisficing solution that is easier to learn.
The effectiveness of the proposed methods is demonstrated on a fast-charging design problem of Lithium-ion batteries.
arXiv Detail & Related papers (2023-10-19T07:03:51Z) - Generalizing Bayesian Optimization with Decision-theoretic Entropies [102.82152945324381]
We consider a generalization of Shannon entropy from work in statistical decision theory.
We first show that special cases of this entropy lead to popular acquisition functions used in BO procedures.
We then show how alternative choices for the loss yield a flexible family of acquisition functions.
arXiv Detail & Related papers (2022-10-04T04:43:58Z) - Optimizer Amalgamation [124.33523126363728]
We are motivated to study a new problem named Amalgamation: how can we best combine a pool of "teacher" amalgamations into a single "student" that can have stronger problem-specific performance?
First, we define three differentiable mechanisms to amalgamate a pool of analyticals by gradient descent.
In order to reduce variance of the process, we also explore methods to stabilize the process by perturbing the target.
arXiv Detail & Related papers (2022-03-12T16:07:57Z) - An Efficient Batch Constrained Bayesian Optimization Approach for Analog
Circuit Synthesis via Multi-objective Acquisition Ensemble [11.64233949999656]
We propose an efficient parallelizable Bayesian optimization algorithm via Multi-objective ACquisition function Ensemble (MACE)
Our proposed algorithm can reduce the overall simulation time by up to 74 times compared to differential evolution (DE) for the unconstrained optimization problem when the batch size is 15.
For the constrained optimization problem, our proposed algorithm can speed up the optimization process by up to 15 times compared to the weighted expected improvement based Bayesian optimization (WEIBO) approach, when the batch size is 15.
arXiv Detail & Related papers (2021-06-28T13:21:28Z) - Divide and Learn: A Divide and Conquer Approach for Predict+Optimize [50.03608569227359]
The predict+optimize problem combines machine learning ofproblem coefficients with a optimization prob-lem that uses the predicted coefficients.
We show how to directlyexpress the loss of the optimization problem in terms of thepredicted coefficients as a piece-wise linear function.
We propose a novel divide and algorithm to tackle optimization problems without this restriction and predict itscoefficients using the optimization loss.
arXiv Detail & Related papers (2020-12-04T00:26:56Z) - Real-Time Optimization Meets Bayesian Optimization and Derivative-Free
Optimization: A Tale of Modifier Adaptation [0.0]
This paper investigates a new class of modifier-adaptation schemes to overcome plant-model mismatch in real-time optimization of uncertain processes.
The proposed schemes embed a physical model and rely on trust-region ideas to minimize risk during the exploration.
The benefits of using an acquisition function, knowing the process noise level, or specifying a nominal process model are illustrated.
arXiv Detail & Related papers (2020-09-18T12:57:17Z) - Global Optimization of Gaussian processes [52.77024349608834]
We propose a reduced-space formulation with trained Gaussian processes trained on few data points.
The approach also leads to significantly smaller and computationally cheaper sub solver for lower bounding.
In total, we reduce time convergence by orders of orders of the proposed method.
arXiv Detail & Related papers (2020-05-21T20:59:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.