Iterative quantum optimization of spin glass problems with rapidly oscillating transverse fields
- URL: http://arxiv.org/abs/2408.06571v1
- Date: Tue, 13 Aug 2024 02:09:30 GMT
- Title: Iterative quantum optimization of spin glass problems with rapidly oscillating transverse fields
- Authors: Brandon Barton, Jacob Sagal, Sean Feeney, George Grattan, Pratik Patnaik, Vadim Oganesyan, Lincoln D Carr, Eliot Kapit,
- Abstract summary: We introduce a new iterative quantum algorithm, called Iterative Symphonic Tunneling for Satisfiability problems (IST-SAT)
IST-SAT solves quantum spin glass optimization problems using high-frequency oscillating transverse fields.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this work, we introduce a new iterative quantum algorithm, called Iterative Symphonic Tunneling for Satisfiability problems (IST-SAT), which solves quantum spin glass optimization problems using high-frequency oscillating transverse fields. IST-SAT operates as a sequence of iterations, in which bitstrings returned from one iteration are used to set spin-dependent phases in oscillating transverse fields in the next iteration. Over several iterations, the novel mechanism of the algorithm steers the system toward the problem ground state. We benchmark IST-SAT on sets of hard MAX-3-XORSAT problem instances with exact state vector simulation, and report polynomial speedups over trotterized adiabatic quantum computation (TAQC) and the best known semi-greedy classical algorithm. When IST-SAT is seeded with a sufficiently good initial approximation, the algorithm converges to exact solution(s) in a polynomial number of iterations. Our numerical results identify a critial Hamming radius(CHR), or quality of initial approximation, where the time-to-solution crosses from exponential to polynomial scaling in problem size. By combining IST-SAT with future classical or quantum approximation algorithms, larger gains may be achieved. The mechanism we present in this work thus presents a new path toward achieving quantum advantage in optimization.
Related papers
- Sum-of-Squares inspired Quantum Metaheuristic for Polynomial Optimization with the Hadamard Test and Approximate Amplitude Constraints [76.53316706600717]
Recently proposed quantum algorithm arXiv:2206.14999 is based on semidefinite programming (SDP)
We generalize the SDP-inspired quantum algorithm to sum-of-squares.
Our results show that our algorithm is suitable for large problems and approximate the best known classicals.
arXiv Detail & Related papers (2024-08-14T19:04:13Z) - Solving The Travelling Salesman Problem Using A Single Qubit [0.0]
The travelling salesman problem (TSP) is a popular NP-hard-combinatorial optimization problem.
We present an algorithm that solves an arbitrary TSP using a single qubit by invoking the principle of quantum parallelism.
The underlying framework of our algorithm is a quantum version of the classical Brachistochrone approach.
arXiv Detail & Related papers (2024-07-24T12:06:37Z) - Quantum Approximate Optimisation for Not-All-Equal SAT [9.427635404752936]
We apply variational quantum algorithm QAOA to a variant of satisfiability problem (SAT): Not-All-Equal SAT.
We show that while the runtime of both solvers scales exponentially with the problem size, the scaling for QAOA is smaller for large enough circuit depths.
arXiv Detail & Related papers (2024-01-05T15:11:24Z) - Indirect Quantum Approximate Optimization Algorithms: application to the
TSP [1.1786249372283566]
Quantum Alternating Operator Ansatz takes into consideration a general parameterized family of unitary operators to efficiently model the Hamiltonian describing the set of vectors.
This algorithm creates an efficient alternative to QAOA, where: 1) a Quantum parametrized circuit executed on a quantum machine models the set of string vectors; 2) a Classical meta-optimization loop executed on a classical machine; 3) an estimation of the average cost of each string vector computing.
arXiv Detail & Related papers (2023-11-06T17:39:14Z) - Stochastic Optimization for Non-convex Problem with Inexact Hessian
Matrix, Gradient, and Function [99.31457740916815]
Trust-region (TR) and adaptive regularization using cubics have proven to have some very appealing theoretical properties.
We show that TR and ARC methods can simultaneously provide inexact computations of the Hessian, gradient, and function values.
arXiv Detail & Related papers (2023-10-18T10:29:58Z) - Polynomial-time Solver of Tridiagonal QUBO and QUDO problems with Tensor Networks [41.94295877935867]
We present an algorithm for solving tridiagonal Quadratic Unconstrained Binary Optimization (QUBO) problems and Quadratic Unconstrained Discrete Optimization (QUDO) problems with one-neighbor interactions.
Our method is based on the simulation of a quantum state to which we will apply an imaginary time evolution and perform a series of partial traces to obtain the state of maximum amplitude.
arXiv Detail & Related papers (2023-09-19T10:45:15Z) - Amplitude amplification-inspired QAOA: Improving the success probability
for solving 3SAT [55.78588835407174]
The amplitude amplification algorithm can be applied to unstructured search for satisfying variable assignments.
The Quantum Approximate Optimization Algorithm (QAOA) is a promising candidate for solving 3SAT for Noisy Intermediate-Scale Quantum devices.
We introduce amplitude amplification-inspired variants of QAOA to improve the success probability for 3SAT.
arXiv Detail & Related papers (2023-03-02T11:52:39Z) - Adiabatic Quantum Computing for Multi Object Tracking [170.8716555363907]
Multi-Object Tracking (MOT) is most often approached in the tracking-by-detection paradigm, where object detections are associated through time.
As these optimization problems are often NP-hard, they can only be solved exactly for small instances on current hardware.
We show that our approach is competitive compared with state-of-the-art optimization-based approaches, even when using of-the-shelf integer programming solvers.
arXiv Detail & Related papers (2022-02-17T18:59:20Z) - A Quantum-Inspired Classical Solver for Boolean k-Satisfiability
Problems [0.0]
We describe an algorithmic approach to the k-satisfiability (k-SAT) problem that is inspired by the amplification amplification algorithm.
We then discuss meaningfully leveraging this setting in a classical digital or analog computing setting to identify the strengths and limitations of AmplifySAT.
arXiv Detail & Related papers (2021-09-21T16:10:52Z) - Adaptive pruning-based optimization of parameterized quantum circuits [62.997667081978825]
Variisy hybrid quantum-classical algorithms are powerful tools to maximize the use of Noisy Intermediate Scale Quantum devices.
We propose a strategy for such ansatze used in variational quantum algorithms, which we call "Efficient Circuit Training" (PECT)
Instead of optimizing all of the ansatz parameters at once, PECT launches a sequence of variational algorithms.
arXiv Detail & Related papers (2020-10-01T18:14:11Z) - Single-Timescale Stochastic Nonconvex-Concave Optimization for Smooth
Nonlinear TD Learning [145.54544979467872]
We propose two single-timescale single-loop algorithms that require only one data point each step.
Our results are expressed in a form of simultaneous primal and dual side convergence.
arXiv Detail & Related papers (2020-08-23T20:36:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.