Simple but Effective Compound Geometric Operations for Temporal Knowledge Graph Completion
- URL: http://arxiv.org/abs/2408.06603v1
- Date: Tue, 13 Aug 2024 03:36:30 GMT
- Title: Simple but Effective Compound Geometric Operations for Temporal Knowledge Graph Completion
- Authors: Rui Ying, Mengting Hu, Jianfeng Wu, Yalan Xie, Xiaoyi Liu, Zhunheng Wang, Ming Jiang, Hang Gao, Linlin Zhang, Renhong Cheng,
- Abstract summary: Temporal knowledge graph completion aims to infer the missing facts in temporal knowledge graphs.
Current approaches usually embed factual knowledge into continuous vector space and apply geometric operations to learn potential patterns in temporal knowledge graphs.
We propose TCompoundE, which is specially designed with two geometric operations, including time-specific and relation-specific operations.
- Score: 18.606006541284422
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Temporal knowledge graph completion aims to infer the missing facts in temporal knowledge graphs. Current approaches usually embed factual knowledge into continuous vector space and apply geometric operations to learn potential patterns in temporal knowledge graphs. However, these methods only adopt a single operation, which may have limitations in capturing the complex temporal dynamics present in temporal knowledge graphs. Therefore, we propose a simple but effective method, i.e. TCompoundE, which is specially designed with two geometric operations, including time-specific and relation-specific operations. We provide mathematical proofs to demonstrate the ability of TCompoundE to encode various relation patterns. Experimental results show that our proposed model significantly outperforms existing temporal knowledge graph embedding models. Our code is available at https://github.com/nk-ruiying/TCompoundE.
Related papers
- Temporal Knowledge Graph Completion with Time-sensitive Relations in
Hypercomplex Space [20.235189945656927]
Temporal knowledge graph completion (TKGC) aims to fill in missing facts within a given temporal knowledge graph at a specific time.
This paper advances beyond conventional approaches by introducing more expressive quaternion representations for TKGC within hypercomplex space.
arXiv Detail & Related papers (2024-03-02T16:50:48Z) - TILP: Differentiable Learning of Temporal Logical Rules on Knowledge
Graphs [17.559644723196843]
We propose TILP, a differentiable framework for temporal logical rules learning.
We present temporal features modeling in tKG, e.g., recurrence, temporal order, interval between pair of relations, and duration, and incorporate it into our learning process.
We show that our proposed framework can improve upon the performance of baseline methods while providing interpretable results.
arXiv Detail & Related papers (2024-02-19T17:30:44Z) - Localized Contrastive Learning on Graphs [110.54606263711385]
We introduce a simple yet effective contrastive model named Localized Graph Contrastive Learning (Local-GCL)
In spite of its simplicity, Local-GCL achieves quite competitive performance in self-supervised node representation learning tasks on graphs with various scales and properties.
arXiv Detail & Related papers (2022-12-08T23:36:00Z) - DyTed: Disentangled Representation Learning for Discrete-time Dynamic
Graph [59.583555454424]
We propose a novel disenTangled representation learning framework for discrete-time Dynamic graphs, namely DyTed.
We specially design a temporal-clips contrastive learning task together with a structure contrastive learning to effectively identify the time-invariant and time-varying representations respectively.
arXiv Detail & Related papers (2022-10-19T14:34:12Z) - Temporal Knowledge Graph Reasoning with Low-rank and Model-agnostic
Representations [1.8262547855491458]
We introduce Time-LowFER, a family of parameter-efficient and time-aware extensions of the low-rank tensor factorization model LowFER.
Noting several limitations in current approaches to represent time, we propose a cycle-aware time-encoding scheme for time features.
We implement our methods in a unified temporal knowledge graph embedding framework, focusing on time-sensitive data processing.
arXiv Detail & Related papers (2022-04-10T22:24:11Z) - Exploring the Limits of Few-Shot Link Prediction in Knowledge Graphs [49.6661602019124]
We study a spectrum of models derived by generalizing the current state of the art for few-shot link prediction.
We find that a simple zero-shot baseline - which ignores any relation-specific information - achieves surprisingly strong performance.
Experiments on carefully crafted synthetic datasets show that having only a few examples of a relation fundamentally limits models from using fine-grained structural information.
arXiv Detail & Related papers (2021-02-05T21:04:31Z) - Temporal Contrastive Graph Learning for Video Action Recognition and
Retrieval [83.56444443849679]
This work takes advantage of the temporal dependencies within videos and proposes a novel self-supervised method named Temporal Contrastive Graph Learning (TCGL)
Our TCGL roots in a hybrid graph contrastive learning strategy to jointly regard the inter-snippet and intra-snippet temporal dependencies as self-supervision signals for temporal representation learning.
Experimental results demonstrate the superiority of our TCGL over the state-of-the-art methods on large-scale action recognition and video retrieval benchmarks.
arXiv Detail & Related papers (2021-01-04T08:11:39Z) - Tucker decomposition-based Temporal Knowledge Graph Completion [35.56360622521721]
We build a new tensor decomposition model for temporal knowledge graphs completion inspired by the Tucker decomposition of order 4 tensor.
We demonstrate that the proposed model is fully expressive and report state-of-the-art results for several public benchmarks.
arXiv Detail & Related papers (2020-11-16T07:05:52Z) - One-shot Learning for Temporal Knowledge Graphs [49.41854171118697]
We propose a one-shot learning framework for link prediction in temporal knowledge graphs.
Our proposed method employs a self-attention mechanism to effectively encode temporal interactions between entities.
Our experiments show that the proposed algorithm outperforms the state of the art baselines for two well-studied benchmarks.
arXiv Detail & Related papers (2020-10-23T03:24:44Z) - Time-aware Graph Embedding: A temporal smoothness and task-oriented
approach [9.669206664225234]
This paper presents a Robustly Time-aware Graph Embedding (RTGE) method by incorporating temporal smoothness.
At first, RTGE integrates a measure of temporal smoothness in the learning process of the time-aware graph embedding.
Secondly, RTGE provides a general task-oriented negative sampling strategy associated with temporally-aware information.
arXiv Detail & Related papers (2020-07-22T02:20:25Z) - SEEK: Segmented Embedding of Knowledge Graphs [77.5307592941209]
We propose a lightweight modeling framework that can achieve highly competitive relational expressiveness without increasing the model complexity.
Our framework focuses on the design of scoring functions and highlights two critical characteristics: 1) facilitating sufficient feature interactions; 2) preserving both symmetry and antisymmetry properties of relations.
arXiv Detail & Related papers (2020-05-02T15:15:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.