論文の概要: A lightweight YOLOv5-FFM model for occlusion pedestrian detection
- arxiv url: http://arxiv.org/abs/2408.06633v1
- Date: Tue, 13 Aug 2024 04:42:02 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-14 18:36:27.432494
- Title: A lightweight YOLOv5-FFM model for occlusion pedestrian detection
- Title(参考訳): 閉塞歩行者検出のための軽量YOLOv5-FFMモデル
- Authors: Xiangjie Luo, Bo Shao, Zhihao Cai, Yingxun Wang,
- Abstract要約: ヨロは、効率的で単純な1段階目標検出法であり、様々な環境における歩行者検出によく用いられる。
本稿では,これらの問題に対処する軽量YOLOv5モデルを提案する。
このモデルは浮動小数点演算(FLOP)の少ない歩行者検出精度を向上させることができる。
- 参考スコア(独自算出の注目度): 1.62877896907106
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The development of autonomous driving technology must be inseparable from pedestrian detection. Because of the fast speed of the vehicle, the accuracy and real-time performance of the pedestrian detection algorithm are very important. YOLO, as an efficient and simple one-stage target detection method, is often used for pedestrian detection in various environments. However, this series of detectors face some challenges, such as excessive computation and undesirable detection rate when facing occluded pedestrians. In this paper, we propose an improved lightweight YOLOv5 model to deal with these problems. This model can achieve better pedestrian detection accuracy with fewer floating-point operations (FLOPs), especially for occluded targets. In order to achieve the above goals, we made improvements based on the YOLOv5 model framework and introduced Ghost module and SE block. Furthermore, we designed a local feature fusion module (FFM) to deal with occlusion in pedestrian detection. To verify the validity of our method, two datasets, Citypersons and CUHK Occlusion, were selected for the experiment. The experimental results show that, compared with the original yolov5s model, the average precision (AP) of our method is significantly improved, while the number of parameters is reduced by 27.9% and FLOPs are reduced by 19.0%.
- Abstract(参考訳): 自動運転技術の開発は歩行者検出とは切り離さなければならない。
車両の速度が速いため、歩行者検出アルゴリズムの精度とリアルタイム性能は非常に重要である。
ヨロは、効率的で単純な1段階目標検出法であり、様々な環境における歩行者検出によく用いられる。
しかし、この一連の検出器は、過剰な計算や、閉塞した歩行者に直面する際の望ましくない検出率など、いくつかの課題に直面している。
本稿では,これらの問題に対処する軽量YOLOv5モデルを提案する。
このモデルは浮動小数点演算(FLOP)の少ない歩行者検出精度が向上する。
上記の目標を達成するため、YOLOv5モデルフレームワークに基づいて改善を行い、GhostモジュールとSEブロックを導入した。
さらに,歩行者検出における閉塞に対処する局所的特徴融合モジュール (FFM) を設計した。
提案手法の有効性を検証するため,CitypersonsとCUHK Occlusionの2つのデータセットを選択した。
実験の結果,元のヨーロブ5sモデルと比較して平均精度(AP)は有意に向上し,パラメータ数は27.9%減少し,FLOPは19.0%低下した。
関連論文リスト
- YOLO-PPA based Efficient Traffic Sign Detection for Cruise Control in Autonomous Driving [10.103731437332693]
自律運転システムにおいて,交通標識を効率的にかつ正確に検出することが重要である。
既存のオブジェクト検出アルゴリズムでは、これらの小さなスケールの兆候をほとんど検出できない。
本稿では, YOLO PPAに基づく交通標識検出アルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-09-05T07:49:21Z) - MambaST: A Plug-and-Play Cross-Spectral Spatial-Temporal Fuser for Efficient Pedestrian Detection [0.5898893619901381]
本稿では,効率的な歩行者検出のためのプラグ・アンド・プレイ型時空間融合パイプラインであるMambaSTを提案する。
暗黒または低照度条件下でRGBカメラを用いて正確な検出を行うことは困難である。
また,提案モデルにより,小規模歩行者検出の性能も向上する。
論文 参考訳(メタデータ) (2024-08-02T06:20:48Z) - SIRST-5K: Exploring Massive Negatives Synthesis with Self-supervised
Learning for Robust Infrared Small Target Detection [53.19618419772467]
単一フレーム赤外線小ターゲット検出(SIRST)は、乱雑な背景から小さなターゲットを認識することを目的としている。
Transformerの開発に伴い、SIRSTモデルのスケールは常に増大している。
赤外線小ターゲットデータの多彩な多様性により,本アルゴリズムはモデル性能と収束速度を大幅に改善する。
論文 参考訳(メタデータ) (2024-03-08T16:14:54Z) - Unsupervised Domain Adaptation for Self-Driving from Past Traversal
Features [69.47588461101925]
本研究では,新しい運転環境に3次元物体検出器を適応させる手法を提案する。
提案手法は,空間的量子化履歴特徴を用いたLiDARに基づく検出モデルを強化する。
実世界のデータセットの実験では、大幅な改善が示されている。
論文 参考訳(メタデータ) (2023-09-21T15:00:31Z) - Particle-Based Score Estimation for State Space Model Learning in
Autonomous Driving [62.053071723903834]
マルチオブジェクト状態推定はロボットアプリケーションの基本的な問題である。
粒子法を用いて最大形パラメータを学習することを検討する。
自動運転車から収集した実データに本手法を適用した。
論文 参考訳(メタデータ) (2022-12-14T01:21:05Z) - A Robust Pedestrian Detection Approach for Autonomous Vehicles [2.0883760606514934]
本稿では,カリフォルニア工科大学の歩行者データセットの実例における歩行者検出問題を処理するためのYOLOv5フレームワークを微調整することを目的とする。
実験結果から,歩行者検出作業における細調整モデルの平均精度(mAP)は,70FPSの最高速度で行う場合,91%以上であることがわかった。
論文 参考訳(メタデータ) (2022-10-19T11:53:14Z) - Channel Pruned YOLOv5-based Deep Learning Approach for Rapid and
Accurate Outdoor Obstacles Detection [6.703770367794502]
1段階のアルゴリズムは、大量のデータをトレーニングする必要があるターゲット検出システムで広く使われている。
畳み込み構造のため、より多くの計算能力とメモリ消費が必要である。
対象検出ネットワークにプルーニング戦略を適用し,パラメータ数とモデルサイズを削減した。
論文 参考訳(メタデータ) (2022-04-27T21:06:04Z) - Improved YOLOv5 network for real-time multi-scale traffic sign detection [4.5598087061051755]
本稿では,アダプティブアテンションモジュール (AAM) と機能拡張モジュール (FEM) を利用して特徴マップ生成の過程での情報損失を低減する機能ピラミッドモデル AF-FPN を提案する。
YOLOv5の本来の特徴ピラミッドネットワークをAF-FPNに置き換え、YOLOv5ネットワークのマルチスケールターゲットの検出性能を向上させる。
論文 参考訳(メタデータ) (2021-12-16T11:02:12Z) - Anchor-free Small-scale Multispectral Pedestrian Detection [88.7497134369344]
適応型単一段アンカーフリーベースアーキテクチャにおける2つのモードの効果的かつ効率的な多重スペクトル融合法を提案する。
我々は,直接的境界ボックス予測ではなく,対象の中心と規模に基づく歩行者表現の学習を目指す。
その結果,小型歩行者の検出における本手法の有効性が示唆された。
論文 参考訳(メタデータ) (2020-08-19T13:13:01Z) - SADet: Learning An Efficient and Accurate Pedestrian Detector [68.66857832440897]
本稿では,一段検出器の検出パイプラインに対する一連の最適化手法を提案する。
効率的な歩行者検出のための単発アンカーベース検出器(SADet)を形成する。
構造的には単純だが、VGA解像度の画像に対して最先端の結果と20ドルFPSのリアルタイム速度を示す。
論文 参考訳(メタデータ) (2020-07-26T12:32:38Z) - Cascaded Regression Tracking: Towards Online Hard Distractor
Discrimination [202.2562153608092]
本稿では,2段階の逐次回帰トラッカーを提案する。
第1段階では, 容易に同定可能な負の候補を抽出する。
第2段階では、残留するあいまいな硬質試料をダブルチェックするために、離散サンプリングに基づくリッジ回帰を設計する。
論文 参考訳(メタデータ) (2020-06-18T07:48:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。