Hierarchical Structured Neural Network for Retrieval
- URL: http://arxiv.org/abs/2408.06653v2
- Date: Fri, 25 Oct 2024 20:11:56 GMT
- Title: Hierarchical Structured Neural Network for Retrieval
- Authors: Kaushik Rangadurai, Siyang Yuan, Minhui Huang, Yiqun Liu, Golnaz Ghasemiesfeh, Yunchen Pu, Xinfeng Xie, Xingfeng He, Fangzhou Xu, Andrew Cui, Vidhoon Viswanathan, Yan Dong, Liang Xiong, Lin Yang, Liang Wang, Jiyan Yang, Chonglin Sun,
- Abstract summary: This paper presents Hierarchical Structured Neural Network (HSNN), a deployed jointly optimized hierarchical clustering and neural network model.
HSNN has been successfully deployed into the Ads Recommendation system and is currently handling major portion of the traffic.
The paper shares our experience in developing this system, dealing with challenges like freshness, volatility, cold start recommendations, cluster collapse and lessons deploying the model in a large scale retrieval production system.
- Score: 16.364477888946478
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Embedding Based Retrieval (EBR) is a crucial component of the retrieval stage in (Ads) Recommendation System that utilizes Two Tower or Siamese Networks to learn embeddings for both users and items (ads). It then employs an Approximate Nearest Neighbor Search (ANN) to efficiently retrieve the most relevant ads for a specific user. Despite the recent rise to popularity in the industry, they have a couple of limitations. Firstly, Two Tower model architecture uses a single dot product interaction which despite their efficiency fail to capture the data distribution in practice. Secondly, the centroid representation and cluster assignment, which are components of ANN, occur after the training process has been completed. As a result, they do not take into account the optimization criteria used for retrieval model. In this paper, we present Hierarchical Structured Neural Network (HSNN), a deployed jointly optimized hierarchical clustering and neural network model that can take advantage of sophisticated interactions and model architectures that are more common in the ranking stages while maintaining a sub-linear inference cost. We achieve 6.5% improvement in offline evaluation and also demonstrate 1.22% online gains through A/B experiments. HSNN has been successfully deployed into the Ads Recommendation system and is currently handling major portion of the traffic. The paper shares our experience in developing this system, dealing with challenges like freshness, volatility, cold start recommendations, cluster collapse and lessons deploying the model in a large scale retrieval production system.
Related papers
- Informed deep hierarchical classification: a non-standard analysis inspired approach [0.0]
It consists in a multi-output deep neural network equipped with specific projection operators placed before each output layer.
The design of such an architecture, called lexicographic hybrid deep neural network (LH-DNN), has been possible by combining tools from different and quite distant research fields.
To assess the efficacy of the approach, the resulting network is compared against the B-CNN, a convolutional neural network tailored for hierarchical classification tasks.
arXiv Detail & Related papers (2024-09-25T14:12:50Z) - RankTower: A Synergistic Framework for Enhancing Two-Tower Pre-Ranking Model [0.0]
In large-scale ranking systems, cascading architectures have been widely adopted to achieve a balance between efficiency and effectiveness.
It is crucial for the pre-ranking model to maintain a balance between efficiency and accuracy to adhere to online latency constraints.
We propose a novel neural network architecture called RankTower, which is designed to efficiently capture user-item interactions.
arXiv Detail & Related papers (2024-07-17T08:07:37Z) - Rethinking Large-scale Pre-ranking System: Entire-chain Cross-domain
Models [0.0]
Existing pre-ranking approaches mainly endure sample selection bias problem owing to ignoring the entire-chain data dependence.
We propose Entire-chain Cross-domain Models (ECM), which leverage samples from the whole cascaded stages to effectively alleviate SSB problem.
We also propose a fine-grained neural structure named ECMM to further improve the pre-ranking accuracy.
arXiv Detail & Related papers (2023-10-12T05:14:42Z) - Split-Et-Impera: A Framework for the Design of Distributed Deep Learning
Applications [8.434224141580758]
Split-Et-Impera determines the set of the best-split points of a neural network based on deep network interpretability principles.
It performs a communication-aware simulation for the rapid evaluation of different neural network rearrangements.
It suggests the best match between the quality of service requirements of the application and the performance in terms of accuracy and latency time.
arXiv Detail & Related papers (2023-03-22T13:00:00Z) - Neural Attentive Circuits [93.95502541529115]
We introduce a general purpose, yet modular neural architecture called Neural Attentive Circuits (NACs)
NACs learn the parameterization and a sparse connectivity of neural modules without using domain knowledge.
NACs achieve an 8x speedup at inference time while losing less than 3% performance.
arXiv Detail & Related papers (2022-10-14T18:00:07Z) - NASRec: Weight Sharing Neural Architecture Search for Recommender
Systems [40.54254555949057]
We propose NASRec, a paradigm that trains a single supernet and efficiently produces abundant models/sub-architectures by weight sharing.
Our results on three Click-Through Rates (CTR) prediction benchmarks show that NASRec can outperform both manually designed models and existing NAS methods.
arXiv Detail & Related papers (2022-07-14T20:15:11Z) - Integrating User and Item Reviews in Deep Cooperative Neural Networks
for Movie Recommendation [0.0]
This work presents a deep model for concurrently learning item attributes and user behaviour from review text.
One of the networks focuses on learning user behaviour from reviews submitted by the user, while the other network learns item attributes from user reviews.
Similar to factorization machine approaches, the shared layer allows latent factors acquired for people and things to interact with each other.
arXiv Detail & Related papers (2022-05-12T18:18:45Z) - Learning Connectivity-Maximizing Network Configurations [123.01665966032014]
We propose a supervised learning approach with a convolutional neural network (CNN) that learns to place communication agents from an expert.
We demonstrate the performance of our CNN on canonical line and ring topologies, 105k randomly generated test cases, and larger teams not seen during training.
After training, our system produces connected configurations 2 orders of magnitude faster than the optimization-based scheme for teams of 10-20 agents.
arXiv Detail & Related papers (2021-12-14T18:59:01Z) - Hybrid SNN-ANN: Energy-Efficient Classification and Object Detection for
Event-Based Vision [64.71260357476602]
Event-based vision sensors encode local pixel-wise brightness changes in streams of events rather than image frames.
Recent progress in object recognition from event-based sensors has come from conversions of deep neural networks.
We propose a hybrid architecture for end-to-end training of deep neural networks for event-based pattern recognition and object detection.
arXiv Detail & Related papers (2021-12-06T23:45:58Z) - Distributed Learning for Time-varying Networks: A Scalable Design [13.657740129012804]
We propose a distributed learning framework based on a scalable deep neural network (DNN) design.
By exploiting the permutation equivalence and invariance properties of the learning tasks, the DNNs with different scales for different clients can be built up.
Model aggregation can also be conducted based on these two sub-matrices to improve the learning convergence and performance.
arXiv Detail & Related papers (2021-07-31T12:44:28Z) - Learning-To-Ensemble by Contextual Rank Aggregation in E-Commerce [8.067201256886733]
We propose a new Learning-To-Ensemble framework RAEGO, which replaces the ensemble model with a contextual Rank Aggregator.
RA-EGO has been deployed in our online system and has improved the revenue significantly.
arXiv Detail & Related papers (2021-07-19T03:24:06Z) - Solving Mixed Integer Programs Using Neural Networks [57.683491412480635]
This paper applies learning to the two key sub-tasks of a MIP solver, generating a high-quality joint variable assignment, and bounding the gap in objective value between that assignment and an optimal one.
Our approach constructs two corresponding neural network-based components, Neural Diving and Neural Branching, to use in a base MIP solver such as SCIP.
We evaluate our approach on six diverse real-world datasets, including two Google production datasets and MIPLIB, by training separate neural networks on each.
arXiv Detail & Related papers (2020-12-23T09:33:11Z) - CorDEL: A Contrastive Deep Learning Approach for Entity Linkage [70.82533554253335]
Entity linkage (EL) is a critical problem in data cleaning and integration.
With the ever-increasing growth of new data, deep learning (DL) based approaches have been proposed to alleviate the high cost of EL associated with the traditional models.
We argue that the twin-network architecture is sub-optimal to EL, leading to inherent drawbacks of existing models.
arXiv Detail & Related papers (2020-09-15T16:33:05Z) - Deep Retrieval: Learning A Retrievable Structure for Large-Scale
Recommendations [21.68175843347951]
We present Deep Retrieval (DR), to learn a retrievable structure directly with user-item interaction data.
DR is among the first non-ANN algorithms successfully deployed at the scale of hundreds of millions of items for industrial recommendation systems.
arXiv Detail & Related papers (2020-07-12T06:23:51Z) - Progressive Tandem Learning for Pattern Recognition with Deep Spiking
Neural Networks [80.15411508088522]
Spiking neural networks (SNNs) have shown advantages over traditional artificial neural networks (ANNs) for low latency and high computational efficiency.
We propose a novel ANN-to-SNN conversion and layer-wise learning framework for rapid and efficient pattern recognition.
arXiv Detail & Related papers (2020-07-02T15:38:44Z) - Online Sequential Extreme Learning Machines: Features Combined From
Hundreds of Midlayers [0.0]
In this paper, we develop an algorithm called hierarchal online sequential learning algorithm (H-OS-ELM)
The algorithm can learn chunk by chunk with fixed or varying block size.
arXiv Detail & Related papers (2020-06-12T00:50:04Z) - DC-NAS: Divide-and-Conquer Neural Architecture Search [108.57785531758076]
We present a divide-and-conquer (DC) approach to effectively and efficiently search deep neural architectures.
We achieve a $75.1%$ top-1 accuracy on the ImageNet dataset, which is higher than that of state-of-the-art methods using the same search space.
arXiv Detail & Related papers (2020-05-29T09:02:16Z) - Binarizing MobileNet via Evolution-based Searching [66.94247681870125]
We propose a use of evolutionary search to facilitate the construction and training scheme when binarizing MobileNet.
Inspired by one-shot architecture search frameworks, we manipulate the idea of group convolution to design efficient 1-Bit Convolutional Neural Networks (CNNs)
Our objective is to come up with a tiny yet efficient binary neural architecture by exploring the best candidates of the group convolution.
arXiv Detail & Related papers (2020-05-13T13:25:51Z) - Belief Propagation Reloaded: Learning BP-Layers for Labeling Problems [83.98774574197613]
We take one of the simplest inference methods, a truncated max-product Belief propagation, and add what is necessary to make it a proper component of a deep learning model.
This BP-Layer can be used as the final or an intermediate block in convolutional neural networks (CNNs)
The model is applicable to a range of dense prediction problems, is well-trainable and provides parameter-efficient and robust solutions in stereo, optical flow and semantic segmentation.
arXiv Detail & Related papers (2020-03-13T13:11:35Z) - Learning to Hash with Graph Neural Networks for Recommender Systems [103.82479899868191]
Graph representation learning has attracted much attention in supporting high quality candidate search at scale.
Despite its effectiveness in learning embedding vectors for objects in the user-item interaction network, the computational costs to infer users' preferences in continuous embedding space are tremendous.
We propose a simple yet effective discrete representation learning framework to jointly learn continuous and discrete codes.
arXiv Detail & Related papers (2020-03-04T06:59:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.