論文の概要: Masked Image Modeling: A Survey
- arxiv url: http://arxiv.org/abs/2408.06687v1
- Date: Tue, 13 Aug 2024 07:27:02 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-14 18:26:42.277169
- Title: Masked Image Modeling: A Survey
- Title(参考訳): Masked Image Modeling: A Survey
- Authors: Vlad Hondru, Florinel Alin Croitoru, Shervin Minaee, Radu Tudor Ionescu, Nicu Sebe,
- Abstract要約: マスク付き画像モデリングは、コンピュータビジョンにおける強力な自己教師付き学習技術として登場した。
我々は近年,分類学を構築し,最も顕著な論文をレビューしている。
我々は,最も人気のあるデータセット上で,様々なマスク付き画像モデリング手法の性能評価結果を集約する。
- 参考スコア(独自算出の注目度): 73.21154550957898
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this work, we survey recent studies on masked image modeling (MIM), an approach that emerged as a powerful self-supervised learning technique in computer vision. The MIM task involves masking some information, e.g. pixels, patches, or even latent representations, and training a model, usually an autoencoder, to predicting the missing information by using the context available in the visible part of the input. We identify and formalize two categories of approaches on how to implement MIM as a pretext task, one based on reconstruction and one based on contrastive learning. Then, we construct a taxonomy and review the most prominent papers in recent years. We complement the manually constructed taxonomy with a dendrogram obtained by applying a hierarchical clustering algorithm. We further identify relevant clusters via manually inspecting the resulting dendrogram. Our review also includes datasets that are commonly used in MIM research. We aggregate the performance results of various masked image modeling methods on the most popular datasets, to facilitate the comparison of competing methods. Finally, we identify research gaps and propose several interesting directions of future work.
- Abstract(参考訳): 本研究では,コンピュータビジョンにおける強力な自己教師型学習手法として登場したマスク型画像モデリング(MIM)の最近の研究について調査する。
MIMタスクは、例えばピクセル、パッチ、あるいは潜伏表現などの情報を隠蔽し、モデル(通常はオートエンコーダ)を訓練して、入力の可視部分で利用可能なコンテキストを使用して、行方不明情報を予測する。
我々は、MIMを前提課題として実装する方法の2つのカテゴリを同定し、定式化し、その1つは再構築に基づくもので、もう1つは対照的な学習に基づくものである。
そして,分類学を構築し,近年でもっとも顕著な論文をレビューする。
階層的クラスタリングアルゴリズムを適用したデンドログラムを用いて手動で構築した分類法を補完する。
得られたデンドログラムを手動で検査することで,関連するクラスタを同定する。
我々のレビューには、MIM研究で一般的に使用されるデータセットも含まれている。
我々は,最も人気のあるデータセット上で,様々なマスク付き画像モデリング手法の性能結果を集約し,競合する手法の比較を容易にする。
最後に、研究ギャップを特定し、今後の研究のいくつかの興味深い方向性を提案する。
関連論文リスト
- Towards Text-Image Interleaved Retrieval [49.96332254241075]
テキスト画像検索(TIIR)タスクを導入し、クエリと文書をインターリーブしたテキスト画像シーケンスとする。
我々は、自然にインターリーブされたwikiHowチュートリアルに基づいてTIIRベンチマークを構築し、インターリーブされたクエリを生成するために特定のパイプラインを設計する。
異なる粒度で視覚トークンの数を圧縮する新しいMMEを提案する。
論文 参考訳(メタデータ) (2025-02-18T12:00:47Z) - Hierarchical Visual Categories Modeling: A Joint Representation Learning and Density Estimation Framework for Out-of-Distribution Detection [28.442470704073767]
本稿では,分布外データと分布内データとを分離する階層型視覚カテゴリーモデリング手法を提案する。
我々は、CIFAR、iNaturalist、SUN、Places、Textures、ImageNet-O、OpenImage-Oを含む7つの人気のあるベンチマーク実験を行った。
我々の視覚表現は古典的手法で学習した特徴と比較して競争力がある。
論文 参考訳(メタデータ) (2024-08-28T07:05:46Z) - Advancing Multimodal Large Language Models in Chart Question Answering with Visualization-Referenced Instruction Tuning [1.6570772838074355]
マルチモーダル大言語モデル(MLLM)は、チャート質問応答(CQA)に大きな可能性を示す
近年の取り組みは、データ収集と合成によるデータセットのスケールアップに重点を置いている。
本稿では,トレーニングデータセットの強化とモデル開発を指導するための,可視化参照型指導チューニング手法を提案する。
論文 参考訳(メタデータ) (2024-07-29T17:04:34Z) - Investigating Self-Supervised Methods for Label-Efficient Learning [27.029542823306866]
低撮影能力のためのコントラスト学習、クラスタリング、マスク付き画像モデリングなど、さまざまな自己教師付きプレテキストタスクについて検討する。
マスク画像モデリングとクラスタリングの両方をプリテキストタスクとして含むフレームワークを導入する。
実規模データセット上でモデルをテストした場合,マルチクラス分類,マルチラベル分類,セマンティックセマンティックセグメンテーションにおける性能向上を示す。
論文 参考訳(メタデータ) (2024-06-25T10:56:03Z) - Masked Modeling for Self-supervised Representation Learning on Vision
and Beyond [69.64364187449773]
仮面モデリングは、トレーニング中に比例的にマスキングされる元のデータの一部を予測する、独特なアプローチとして現れてきた。
マスクモデリングにおけるテクニックの詳細については,多様なマスキング戦略,ターゲット回復,ネットワークアーキテクチャなどについて詳述する。
我々は、現在の手法の限界について議論し、マスクモデリング研究を進めるためのいくつかの道のりを指摘した。
論文 参考訳(メタデータ) (2023-12-31T12:03:21Z) - Mixture of Self-Supervised Learning [2.191505742658975]
自己教師型学習は、特定のタスクに適用される前にモデル上でトレーニングされるプレテキストタスクを使用することで機能する。
従来の研究では、プリテキストタスクとして1つのタイプの変換しか使用されていなかった。
これにより、複数のプリテキストタスクが使用されているかどうか、すべてのプリテキストタスクを組み合わせるためにゲーティングネットワークを使用するかどうか、という疑問が持ち上がる。
論文 参考訳(メタデータ) (2023-07-27T14:38:32Z) - MOCA: Self-supervised Representation Learning by Predicting Masked Online Codebook Assignments [72.6405488990753]
自己教師付き学習は、ビジョントランスフォーマーネットワークの欲求を軽減できる。
所望のプロパティを統一する単段および単段のMOCAを提案する。
我々は,様々な評価プロトコルにおいて,低照度設定と強力な実験結果に対して,最先端の新たな結果を得る。
論文 参考訳(メタデータ) (2023-07-18T15:46:20Z) - MA2CL:Masked Attentive Contrastive Learning for Multi-Agent
Reinforcement Learning [128.19212716007794]
我々はtextbfMulti-textbfAgent textbfMasked textbfAttentive textbfContrastive textbfLearning (MA2CL) という効果的なフレームワークを提案する。
MA2CLは、潜伏空間におけるマスクされたエージェント観察を再構築することにより、時間的およびエージェントレベルの予測の両方の学習表現を奨励する。
提案手法は,様々なMARLアルゴリズムの性能とサンプル効率を大幅に向上させ,様々な視覚的,状態的シナリオにおいて,他の手法よりも優れる。
論文 参考訳(メタデータ) (2023-06-03T05:32:19Z) - Delving Deeper into Data Scaling in Masked Image Modeling [145.36501330782357]
視覚認識のためのマスク付き画像モデリング(MIM)手法のスケーリング能力に関する実証的研究を行った。
具体的には、Webで収集したCoyo-700Mデータセットを利用する。
我々のゴールは、データとモデルのサイズの異なるスケールでダウンストリームタスクのパフォーマンスがどのように変化するかを調べることです。
論文 参考訳(メタデータ) (2023-05-24T15:33:46Z) - Referring Expression Comprehension: A Survey of Methods and Datasets [20.42495629501261]
Referring Expression comprehension (REC) は、自然言語で表現された参照表現によって記述された画像中の対象物をローカライズすることを目的としている。
まず,問題に対する近代的アプローチを比較検討する。
構造化グラフ表現と相互作用するモジュラーアーキテクチャとグラフベースモデルについて論じる。
論文 参考訳(メタデータ) (2020-07-19T01:45:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。