論文の概要: DC3DO: Diffusion Classifier for 3D Objects
- arxiv url: http://arxiv.org/abs/2408.06693v1
- Date: Tue, 13 Aug 2024 07:35:56 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-14 18:16:48.369012
- Title: DC3DO: Diffusion Classifier for 3D Objects
- Title(参考訳): DC3DO:3次元オブジェクトの拡散分類器
- Authors: Nursena Koprucu, Meher Shashwat Nigam, Shicheng Xu, Biruk Abere, Gabriele Dominici, Andrew Rodriguez, Sharvaree Vadgam, Berfin Inal, Alberto Tono,
- Abstract要約: ジェフリー・ヒントン(Geoffrey Hinton)が生成モデリングに力を入れ、オブジェクト分類における3次元拡散モデルの利用について検討する。
提案手法であるDiffusion for 3D Objects (DC3DO) は,追加トレーニングなしで3D形状のゼロショット分類を可能にする。
- 参考スコア(独自算出の注目度): 3.265023962374139
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Inspired by Geoffrey Hinton emphasis on generative modeling, To recognize shapes, first learn to generate them, we explore the use of 3D diffusion models for object classification. Leveraging the density estimates from these models, our approach, the Diffusion Classifier for 3D Objects (DC3DO), enables zero-shot classification of 3D shapes without additional training. On average, our method achieves a 12.5 percent improvement compared to its multiview counterparts, demonstrating superior multimodal reasoning over discriminative approaches. DC3DO employs a class-conditional diffusion model trained on ShapeNet, and we run inferences on point clouds of chairs and cars. This work highlights the potential of generative models in 3D object classification.
- Abstract(参考訳): ジェフリー・ヒントン(Geoffrey Hinton)は、生成モデリング(generative modeling)を強調した: 形状を認識し、最初にそれらを生成するために、オブジェクト分類に3D拡散モデルを用いることを探求する。
これらのモデルから得られた密度推定を利用して、3次元オブジェクトの拡散分類器 (Diffusion Classifier for 3D Objects, DC3DO) は、追加の訓練なしに3次元形状のゼロショット分類を可能にする。
本手法は, 差別的アプローチよりも優れたマルチモーダル推論を実証し, 平均12.5パーセントの改善を実現している。
直流3DOはShapeNetで訓練されたクラス条件拡散モデルを用いており、椅子や車の点雲上で推論を行う。
この研究は、3次元オブジェクト分類における生成モデルの可能性を強調している。
関連論文リスト
- DIRECT-3D: Learning Direct Text-to-3D Generation on Massive Noisy 3D Data [50.164670363633704]
テキストプロンプトから高品質な3Dアセットを作成するための拡散型3D生成モデルであるDIRECT-3Dを提案する。
我々のモデルは、広範に騒々しく不整合な3D資産で直接訓練されている。
単一クラス生成とテキスト・ツー・3D生成の両方で最先端の性能を実現する。
論文 参考訳(メタデータ) (2024-06-06T17:58:15Z) - SC-Diff: 3D Shape Completion with Latent Diffusion Models [4.913210912019975]
本稿では, 形状の完成に最適化された3次元潜在拡散モデルを用いて, 3次元形状完備化手法を提案する。
本手法は,空間的コンディショニングとクロスアテンションによる画像ベースコンディショニングを,キャプチャー部分スキャンからの3次元特徴の統合により組み合わせたものである。
論文 参考訳(メタデータ) (2024-03-19T06:01:11Z) - ComboVerse: Compositional 3D Assets Creation Using Spatially-Aware Diffusion Guidance [76.7746870349809]
複雑な構成で高品質な3Dアセットを生成する3D生成フレームワークであるComboVerseについて,複数のモデルを組み合わせることを学習して紹介する。
提案手法は,標準スコア蒸留法と比較して,物体の空間的アライメントを重視している。
論文 参考訳(メタデータ) (2024-03-19T03:39:43Z) - Diffusion-SS3D: Diffusion Model for Semi-supervised 3D Object Detection [77.23918785277404]
半教師付き3次元物体検出のための拡散モデルを用いて,擬似ラベルの品質向上に向けた新たな視点であるDiffusion-SS3Dを提案する。
具体的には、劣化した3Dオブジェクトサイズとクラスラベル、分布を生成し、拡散モデルをデノナイズプロセスとして利用し、バウンディングボックス出力を得る。
我々は,ScanNetとSUN RGB-Dベンチマークデータセットの実験を行い,既存手法に対する最先端性能の実現を実証した。
論文 参考訳(メタデータ) (2023-12-05T18:54:03Z) - Leveraging Large-Scale Pretrained Vision Foundation Models for
Label-Efficient 3D Point Cloud Segmentation [67.07112533415116]
本稿では3Dポイントクラウドセグメンテーションタスクに様々な基礎モデルを適用する新しいフレームワークを提案する。
我々のアプローチでは、異なる大きな視覚モデルを用いて2次元セマンティックマスクの初期予測を行う。
本研究では,ロバストな3Dセマンティックな擬似ラベルを生成するために,投票による全ての結果を効果的に組み合わせたセマンティックなラベル融合戦略を提案する。
論文 参考訳(メタデータ) (2023-11-03T15:41:15Z) - Diffusion-based 3D Object Detection with Random Boxes [58.43022365393569]
既存のアンカーベースの3D検出方法は、アンカーの実証的な設定に依存しており、アルゴリズムはエレガンスを欠いている。
提案するDiff3Detは,検出ボックスを生成対象として考慮し,拡散モデルから3次元オブジェクト検出のための提案生成へ移行する。
推論段階では、モデルは予測結果にランダムボックスのセットを徐々に洗練する。
論文 参考訳(メタデータ) (2023-09-05T08:49:53Z) - Score Jacobian Chaining: Lifting Pretrained 2D Diffusion Models for 3D
Generation [28.25023686484727]
拡散モデルは勾配のベクトル場を予測することを学習する。
学習した勾配の連鎖則を提案し、微分可能場のヤコビアンを通して拡散モデルのスコアをバックプロパゲートする。
大規模なLAIONデータセットでトレーニングされたStable Diffusionを含む,市販の拡散画像生成モデル上で,アルゴリズムを実行する。
論文 参考訳(メタデータ) (2022-12-01T18:56:37Z) - 3D Neural Field Generation using Triplane Diffusion [37.46688195622667]
ニューラルネットワークの3次元認識のための効率的な拡散ベースモデルを提案する。
当社のアプローチでは,ShapeNetメッシュなどのトレーニングデータを,連続的占有フィールドに変換することによって前処理する。
本論文では,ShapeNetのオブジェクトクラスにおける3D生成の現状について述べる。
論文 参考訳(メタデータ) (2022-11-30T01:55:52Z) - Generative VoxelNet: Learning Energy-Based Models for 3D Shape Synthesis
and Analysis [143.22192229456306]
本稿では,体積形状を表す3次元エネルギーモデルを提案する。
提案モデルの利点は6倍である。
実験により,提案モデルが高品質な3d形状パターンを生成できることが実証された。
論文 参考訳(メタデータ) (2020-12-25T06:09:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。