論文の概要: Quantum cloning transformation unlocks the potential of W class of states in a secret sharing protocol
- arxiv url: http://arxiv.org/abs/2408.06722v1
- Date: Tue, 13 Aug 2024 08:27:58 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-14 18:16:48.332489
- Title: Quantum cloning transformation unlocks the potential of W class of states in a secret sharing protocol
- Title(参考訳): 量子クローン変換は秘密共有プロトコルにおけるWクラスのポテンシャルを解き放つ
- Authors: Rashi Jain, Satyabrata Adhikari,
- Abstract要約: 本稿では,3つのパーティ間で共有される状態の3ビットWクラスを利用した量子秘密共有プロトコルを提案する。
このプロトコルは確率的であり,プロトコルの成功確率を計算した。
より絡み合った状態のWクラスでさえも、提案された秘密共有スキームにおいて重要な役割を果たす。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: One of the most challenging problems is to share a secret because the sender does not trust the receiver completely. Thus, the sender provides one part of the information to the receiver and shares the other part of the information to a third party on whom the sender can rely. The secret can be revealed when the receiver and the third party agree to cooperate. This is the essence of the secret-sharing protocol. A lot of studies have been done on it using the three-qubit GHZ state, and only a few works have involved the W state. In this work, we introduce a quantum secret sharing protocol exploiting a three-qubit W class of state shared between three parties, Alice (Sender), Bob (Mediator), and Charlie (Receiver). In the proposed protocol, the shared state parameters and the secret are linked in such a way that it is very difficult to factor them. We will show that these parameters can be factored out easily if the receiver uses a quantum cloning machine (QCM) and thus can retrieve the secret. We find that the protocol is probabilistic and have calculated the probability of success of the protocol. Further, we establish the relation between the success probability and the efficiency of the QCM. In general, we find that the efficiency of the constructed QCM is greater than or equal to $\frac{1}{3}$, but we have shown that its efficiency can be enhanced when the parameters of the shared state are used as the parameters of the QCM. Moreover, we derived the linkage between the probability of success and the amount of entanglement in the shared W class of state. We analyzed the obtained result and found that even a less entangled W class of state can also play a vital role in the proposed secret-sharing scheme.
- Abstract(参考訳): 最も難しい問題の1つは、送信側が受信側を完全に信頼していないため、秘密を共有することである。
これにより、送信側は受信側に情報の一部を供給し、送信側が依存できる第三者にその情報の他部分を共有する。
受信者と第三者が協力することに同意したとき、秘密を明らかにすることができる。
これがシークレット共有プロトコルの本質です。
3量子GHZ状態を用いて多くの研究が行われており、W状態に関わる研究はごくわずかである。
本研究では,Alice(Sender),Bob(Mediator),Charlie(Receiver)の3つのパーティ間で共有される状態の3ビットWクラスを利用した量子秘密共有プロトコルを提案する。
提案プロトコルでは、共有状態パラメータとシークレットは、それらを決定するのが非常に難しい方法でリンクされる。
これらのパラメータは、受信機が量子クローニングマシン(QCM)を使用している場合、容易に分解できることを示し、シークレットを検索できる。
このプロトコルは確率的であり,プロトコルの成功確率を計算した。
さらに、我々は、成功確率とQCMの効率の関係を確立する。
一般に、構築されたQCMの効率は$\frac{1}{3}$より大きいか等しいが、共有状態のパラメータをQCMのパラメータとして使用すると、その効率が向上できることが示されている。
さらに,共有状態のWクラスにおける成功確率と絡み合い量との相関関係を導出した。
得られた結果を分析した結果,より絡み合った状態のWクラスであっても,提案した秘密共有方式において重要な役割を果たすことがわかった。
関連論文リスト
- Single-Round Proofs of Quantumness from Knowledge Assumptions [41.94295877935867]
量子性の証明は、効率的な量子コンピュータが通過できる、効率よく検証可能な対話型テストである。
既存のシングルラウンドプロトコルは大きな量子回路を必要とするが、マルチラウンドプロトコルはより小さな回路を使用するが、実験的な中間回路測定を必要とする。
我々は、既存の知識仮定に基づいて、量子性の効率的なシングルラウンド証明を構築した。
論文 参考訳(メタデータ) (2024-05-24T17:33:10Z) - Quantum Secret Sharing Enhanced: Utilizing W States for Anonymous and
Secure Communication [11.077883755438053]
量子秘密共有(Quantum Secret Share、QSS)は、量子力学の原理と秘密情報の共有を融合させた結果である。
我々は、W状態を介してQASSプロトコルを提案し、シークレットを共有できると同時に、回復可能性、回復セキュリティ、回復匿名性を確保できる。
調査の結果,W状態はノイズ干渉の緩和に優れた性能を示し,実用化に適していることが判明した。
論文 参考訳(メタデータ) (2024-02-04T09:15:02Z) - Verifying the security of a continuous variable quantum communication protocol via quantum metrology [1.6632263048576381]
量子力学は、複数のリモートパーティ間の無条件でセキュアな通信を可能にする。
このようなプロトコルのセキュリティ証明は、通常、使用中の量子チャネルの容量の境界に依存する。
この作業では、これらの2つの領域間の接続を確立します。
論文 参考訳(メタデータ) (2023-11-09T14:15:42Z) - Quantum advantage in a unified scenario and secure detection of
resources [55.2480439325792]
我々は、量子優位性を持つ異なるアプローチを研究するために単一のタスクを考える。
我々は、キュービット通信の全体プロセスにおける最適成功確率が、cbit通信のそれよりも高いことを示す。
論文 参考訳(メタデータ) (2023-09-22T23:06:20Z) - Quantum Secret Reconstruction [2.8233507229238177]
本稿では,クラスタ状態に基づく最初の量子秘密再構成プロトコルを提案する。
提案プロトコルは,いくつかの攻撃に対して安全であることを示す。
論文 参考訳(メタデータ) (2023-06-15T05:24:29Z) - Secure Computation with Shared EPR Pairs (Or: How to Teleport in
Zero-Knowledge) [26.90896904213257]
量子チャネルによるセキュアなテレポーテーションが可能であることを示す。
具体的には、量子演算の$Q$の説明を考えると、(量子)入力$rho$の送信者は単一の古典的メッセージを送り、$Q(rho)$を受信機に安全に送信することができる。
論文 参考訳(メタデータ) (2023-04-20T17:29:26Z) - Semiquantum secret sharing by using x-type states [4.397981844057195]
x型状態に基づく半量子秘密共有プロトコルを提案する。
これは、2つの古典的コミュニカントが協力して量子コミュニカントの共有秘密鍵を抽出できる場合にのみ達成できるという目標を達成することができる。
詳細なセキュリティ分析の結果、このプロトコルは盗聴者に対して完全に堅牢であることが判明した。
論文 参考訳(メタデータ) (2022-08-03T08:58:45Z) - Data post-processing for the one-way heterodyne protocol under
composable finite-size security [62.997667081978825]
本研究では,実用的連続可変(CV)量子鍵分布プロトコルの性能について検討する。
ヘテロダイン検出を用いたガウス変調コヒーレント状態プロトコルを高信号対雑音比で検討する。
これにより、プロトコルの実践的な実装の性能を調べ、上記のステップに関連付けられたパラメータを最適化することができる。
論文 参考訳(メタデータ) (2022-05-20T12:37:09Z) - Revocation and Reconstruction of Shared Quantum Secrets [0.5735035463793007]
既存のプロトコルでは、ディーラーが株式保有者がすべて半正直であることを知ったら、秘密を取り戻せる手段はない。
この作業では、半正直で不正ではない株主を明示的に扱います。
我々のプロトコルは、最悪の状況で秘密を取り戻そうという戦略を設計することで、この問題の解決に大きな進歩をもたらします。
論文 参考訳(メタデータ) (2021-12-31T17:08:12Z) - Secure Two-Party Quantum Computation Over Classical Channels [63.97763079214294]
古典的アリス(Alice)と量子的ボブ(Quantum Bob)が古典的なチャネルを通してのみ通信できるような設定を考える。
悪質な量子逆数の場合,ブラックボックスシミュレーションを用いた2次元量子関数を実現することは,一般に不可能であることを示す。
我々は、QMA関係Rの古典的量子知識(PoQK)プロトコルを入力として、古典的当事者によって検証可能なRのゼロ知識PoQKを出力するコンパイラを提供する。
論文 参考訳(メタデータ) (2020-10-15T17:55:31Z) - Gaussian conversion protocols for cubic phase state generation [104.23865519192793]
連続変数を持つ普遍量子コンピューティングは非ガウス的資源を必要とする。
立方相状態は非ガウス状態であり、実験的な実装はいまだ解明されていない。
非ガウス状態から立方相状態への変換を可能にする2つのプロトコルを導入する。
論文 参考訳(メタデータ) (2020-07-07T09:19:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。