Multilingual Models for Check-Worthy Social Media Posts Detection
- URL: http://arxiv.org/abs/2408.06737v1
- Date: Tue, 13 Aug 2024 08:55:28 GMT
- Title: Multilingual Models for Check-Worthy Social Media Posts Detection
- Authors: Sebastian Kula, Michal Gregor,
- Abstract summary: The study includes a comprehensive analysis of different models, with a special focus on multilingual models.
The novelty of this work lies in the development of multi-label multilingual classification models that can simultaneously detect harmful posts and posts that contain verifiable factual claims in an efficient way.
- Score: 0.552480439325792
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This work presents an extensive study of transformer-based NLP models for detection of social media posts that contain verifiable factual claims and harmful claims. The study covers various activities, including dataset collection, dataset pre-processing, architecture selection, setup of settings, model training (fine-tuning), model testing, and implementation. The study includes a comprehensive analysis of different models, with a special focus on multilingual models where the same model is capable of processing social media posts in both English and in low-resource languages such as Arabic, Bulgarian, Dutch, Polish, Czech, Slovak. The results obtained from the study were validated against state-of-the-art models, and the comparison demonstrated the robustness of the proposed models. The novelty of this work lies in the development of multi-label multilingual classification models that can simultaneously detect harmful posts and posts that contain verifiable factual claims in an efficient way.
Related papers
- Split and Rephrase with Large Language Models [2.499907423888049]
Split and Rephrase (SPRP) task consists in splitting complex sentences into a sequence of shorter grammatical sentences.
We evaluate large language models on the task, showing that they can provide large improvements over the state of the art on the main metrics.
arXiv Detail & Related papers (2023-12-18T10:16:37Z) - Multilingual and Multi-topical Benchmark of Fine-tuned Language models and Large Language Models for Check-Worthy Claim Detection [1.4779899760345434]
This study compares the performance of (1) fine-tuned language models and (2) large language models on the task of check-worthy claim detection.
We composed a multilingual and multi-topical dataset comprising texts of various sources and styles.
arXiv Detail & Related papers (2023-11-10T15:36:35Z) - Evaluating Large Language Models on Controlled Generation Tasks [92.64781370921486]
We present an extensive analysis of various benchmarks including a sentence planning benchmark with different granularities.
After comparing large language models against state-of-the-start finetuned smaller models, we present a spectrum showing large language models falling behind, are comparable, or exceed the ability of smaller models.
arXiv Detail & Related papers (2023-10-23T03:48:24Z) - Unified Model Learning for Various Neural Machine Translation [63.320005222549646]
Existing machine translation (NMT) studies mainly focus on developing dataset-specific models.
We propose a versatile'' model, i.e., the Unified Model Learning for NMT (UMLNMT) that works with data from different tasks.
OurNMT results in substantial improvements over dataset-specific models with significantly reduced model deployment costs.
arXiv Detail & Related papers (2023-05-04T12:21:52Z) - Language Model Cascades [72.18809575261498]
Repeated interactions at test-time with a single model, or the composition of multiple models together, further expands capabilities.
Cases with control flow and dynamic structure require techniques from probabilistic programming.
We formalize several existing techniques from this perspective, including scratchpads / chain of thought, verifiers, STaR, selection-inference, and tool use.
arXiv Detail & Related papers (2022-07-21T07:35:18Z) - An Application of Pseudo-Log-Likelihoods to Natural Language Scoring [5.382454613390483]
A language model with relatively few parameters and training steps can outperform it on a recent large data set.
We produce some absolute state-of-the-art results for common sense reasoning in binary choice tasks.
We argue that robustness of the smaller model ought to be understood in terms of compositionality.
arXiv Detail & Related papers (2022-01-23T22:00:54Z) - Language Models are Few-shot Multilingual Learners [66.11011385895195]
We evaluate the multilingual skills of the GPT and T5 models in conducting multi-class classification on non-English languages.
We show that, given a few English examples as context, pre-trained language models can predict not only English test samples but also non-English ones.
arXiv Detail & Related papers (2021-09-16T03:08:22Z) - Towards Trustworthy Deception Detection: Benchmarking Model Robustness
across Domains, Modalities, and Languages [10.131671217810581]
We evaluate model robustness to out-of-domain data, modality-specific features, and languages other than English.
We find that with additional image content as input, ELMo embeddings yield significantly fewer errors compared to BERT orGLoVe.
arXiv Detail & Related papers (2021-04-23T18:05:52Z) - Unsupervised Domain Adaptation of a Pretrained Cross-Lingual Language
Model [58.27176041092891]
Recent research indicates that pretraining cross-lingual language models on large-scale unlabeled texts yields significant performance improvements.
We propose a novel unsupervised feature decomposition method that can automatically extract domain-specific features from the entangled pretrained cross-lingual representations.
Our proposed model leverages mutual information estimation to decompose the representations computed by a cross-lingual model into domain-invariant and domain-specific parts.
arXiv Detail & Related papers (2020-11-23T16:00:42Z) - Comparison of Interactive Knowledge Base Spelling Correction Models for
Low-Resource Languages [81.90356787324481]
Spelling normalization for low resource languages is a challenging task because the patterns are hard to predict.
This work shows a comparison of a neural model and character language models with varying amounts on target language data.
Our usage scenario is interactive correction with nearly zero amounts of training examples, improving models as more data is collected.
arXiv Detail & Related papers (2020-10-20T17:31:07Z) - Comparative Study of Language Models on Cross-Domain Data with Model
Agnostic Explainability [0.0]
The study compares the state-of-the-art language models - BERT, ELECTRA and its derivatives which include RoBERTa, ALBERT and DistilBERT.
The experimental results establish new state-of-the-art for 2013 rating classification task and Financial Phrasebank sentiment detection task with 69% accuracy and 88.2% accuracy respectively.
arXiv Detail & Related papers (2020-09-09T04:31:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.