xVLM2Vec: Adapting LVLM-based embedding models to multilinguality using Self-Knowledge Distillation
- URL: http://arxiv.org/abs/2503.09313v2
- Date: Sun, 16 Mar 2025 14:15:20 GMT
- Title: xVLM2Vec: Adapting LVLM-based embedding models to multilinguality using Self-Knowledge Distillation
- Authors: Elio Musacchio, Lucia Siciliani, Pierpaolo Basile, Giovanni Semeraro,
- Abstract summary: We propose an adaptation methodology for Large Vision-Language Models trained on English language data to improve their performance.<n>We introduce a benchmark to evaluate the effectiveness of multilingual and multimodal embedding models.
- Score: 2.9998889086656586
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: In the current literature, most embedding models are based on the encoder-only transformer architecture to extract a dense and meaningful representation of the given input, which can be a text, an image, and more. With the recent advances in language modeling thanks to the introduction of Large Language Models, the possibility of extracting embeddings from these large and extensively trained models has been explored. However, current studies focus on textual embeddings in English, which is also the main language on which these models have been trained. Furthermore, there are very few models that consider multimodal and multilingual input. In light of this, we propose an adaptation methodology for Large Vision-Language Models trained on English language data to improve their performance in extracting multilingual and multimodal embeddings. Finally, we design and introduce a benchmark to evaluate the effectiveness of multilingual and multimodal embedding models.
Related papers
- LUSIFER: Language Universal Space Integration for Enhanced Multilingual Embeddings with Large Language Models [89.13128402847943]
We present LUSIFER, a novel zero-shot approach that adapts LLM-based embedding models for multilingual tasks without requiring multilingual supervision.<n>LUSIFER's architecture combines a multilingual encoder, serving as a language-universal learner, with an LLM-based embedding model optimized for embedding-specific tasks.<n>We introduce a new benchmark encompassing 5 primary embedding tasks, 123 diverse datasets, and coverage across 14 languages.
arXiv Detail & Related papers (2025-01-01T15:43:07Z) - IAA: Inner-Adaptor Architecture Empowers Frozen Large Language Model with Multimodal Capabilities [4.269326314400742]
We introduce the Inner-Adaptor Architecture for multimodal large language models (MLLMs)
The architecture incorporates multiple multimodal adaptors at varying depths within the large language model to facilitate direct interaction with the inherently text-oriented transformer layers.
Unlike previous approaches of freezing language models that require large-scale aligned data, our proposed architecture is able to achieve superior performance on small-scale datasets.
arXiv Detail & Related papers (2024-08-23T08:10:13Z) - MoE-CT: A Novel Approach For Large Language Models Training With Resistance To Catastrophic Forgetting [53.77590764277568]
We introduce a novel MoE-CT architecture that separates the base model's learning from the multilingual expansion process.
Our design freezes the original LLM parameters, thus safeguarding its performance in high-resource languages, while an appended MoE module, trained on diverse language datasets, augments low-resource language proficiency.
arXiv Detail & Related papers (2024-06-25T11:03:45Z) - Language Models on a Diet: Cost-Efficient Development of Encoders for Closely-Related Languages via Additional Pretraining [4.38070902806635]
We set up a benchmark for languages Croatian, Serbian, Bosnian and Montenegrin.
We show that comparable performance to dedicated from-scratch models can be obtained by additionally pretraining available multilingual models.
We also show that neighboring languages, in our case Slovenian, can be included in the additional pretraining with little to no loss in the performance of the final model.
arXiv Detail & Related papers (2024-04-08T11:55:44Z) - ColBERT-XM: A Modular Multi-Vector Representation Model for Zero-Shot
Multilingual Information Retrieval [10.664434993386523]
Current approaches circumvent the lack of high-quality labeled data in non-English languages.
We present a novel modular dense retrieval model that learns from the rich data of a single high-resource language.
arXiv Detail & Related papers (2024-02-23T02:21:24Z) - Large Multilingual Models Pivot Zero-Shot Multimodal Learning across Languages [76.35234803589412]
MPM is an effective training paradigm for training large multimodal models in non-English languages.
We build large multimodal models VisCPM in image-to-text and text-to-image generation, which achieve state-of-the-art (open-source) performance in Chinese.
arXiv Detail & Related papers (2023-08-23T09:55:41Z) - Generalizing Multimodal Pre-training into Multilingual via Language
Acquisition [54.69707237195554]
English-based Vision-Language Pre-training has achieved great success in various downstream tasks.
Some efforts have been taken to generalize this success to non-English languages through Multilingual Vision-Language Pre-training.
We propose a textbfMultitextbfLingual textbfAcquisition (MLA) framework that can easily generalize a monolingual Vision-Language Pre-training model into multilingual.
arXiv Detail & Related papers (2022-05-29T08:53:22Z) - Towards Developing a Multilingual and Code-Mixed Visual Question
Answering System by Knowledge Distillation [20.33235443471006]
We propose a knowledge distillation approach to extend an English language-vision model (teacher) into an equally effective multilingual and code-mixed model (student)
We also create the large-scale multilingual and code-mixed VQA dataset in eleven different language setups.
Experimental results and in-depth analysis show the effectiveness of the proposed VQA model over the pre-trained language-vision models on eleven diverse language setups.
arXiv Detail & Related papers (2021-09-10T03:47:29Z) - Specializing Multilingual Language Models: An Empirical Study [50.7526245872855]
Contextualized word representations from pretrained multilingual language models have become the de facto standard for addressing natural language tasks.
For languages rarely or never seen by these models, directly using such models often results in suboptimal representation or use of data.
arXiv Detail & Related papers (2021-06-16T18:13:55Z) - UNKs Everywhere: Adapting Multilingual Language Models to New Scripts [103.79021395138423]
Massively multilingual language models such as multilingual BERT (mBERT) and XLM-R offer state-of-the-art cross-lingual transfer performance on a range of NLP tasks.
Due to their limited capacity and large differences in pretraining data, there is a profound performance gap between resource-rich and resource-poor target languages.
We propose novel data-efficient methods that enable quick and effective adaptation of pretrained multilingual models to such low-resource languages and unseen scripts.
arXiv Detail & Related papers (2020-12-31T11:37:28Z) - Evaluating Cross-Lingual Transfer Learning Approaches in Multilingual
Conversational Agent Models [1.52292571922932]
We propose a general multilingual model framework for Natural Language Understanding (NLU) models.
We show that these multilingual models can reach same or better performance compared to monolingual models across language-specific test data.
arXiv Detail & Related papers (2020-12-07T17:14:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.