論文の概要: Long-Tailed Out-of-Distribution Detection: Prioritizing Attention to Tail
- arxiv url: http://arxiv.org/abs/2408.06742v1
- Date: Tue, 13 Aug 2024 09:03:00 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-14 18:07:03.012217
- Title: Long-Tailed Out-of-Distribution Detection: Prioritizing Attention to Tail
- Title(参考訳): 長時間のアウト・オブ・ディストリビューション検出:タイルへの注意の優先順位付け
- Authors: Yina He, Lei Peng, Yongcun Zhang, Juanjuan Weng, Zhiming Luo, Shaozi Li,
- Abstract要約: 本稿では,減量ではなく増量によるPATT法を提案する。
我々の主な直感は、von Mises-Fisher(vMF)分布を混合してIDデータと温度スケーリングモジュールをモデル化し、IDデータの信頼性を高めることである。
提案手法は, 様々なベンチマークにおいて, 現在の最先端手法よりも優れている。
- 参考スコア(独自算出の注目度): 21.339310734169665
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Current out-of-distribution (OOD) detection methods typically assume balanced in-distribution (ID) data, while most real-world data follow a long-tailed distribution. Previous approaches to long-tailed OOD detection often involve balancing the ID data by reducing the semantics of head classes. However, this reduction can severely affect the classification accuracy of ID data. The main challenge of this task lies in the severe lack of features for tail classes, leading to confusion with OOD data. To tackle this issue, we introduce a novel Prioritizing Attention to Tail (PATT) method using augmentation instead of reduction. Our main intuition involves using a mixture of von Mises-Fisher (vMF) distributions to model the ID data and a temperature scaling module to boost the confidence of ID data. This enables us to generate infinite contrastive pairs, implicitly enhancing the semantics of ID classes while promoting differentiation between ID and OOD data. To further strengthen the detection of OOD data without compromising the classification performance of ID data, we propose feature calibration during the inference phase. By extracting an attention weight from the training set that prioritizes the tail classes and reduces the confidence in OOD data, we improve the OOD detection capability. Extensive experiments verified that our method outperforms the current state-of-the-art methods on various benchmarks.
- Abstract(参考訳): 現在のアウト・オブ・ディストリビューション(OOD)検出法は、通常はバランスの取れたイン・ディストリビューション(ID)データを仮定する。
長い尾のOOD検出に対する以前のアプローチは、しばしばヘッドクラスのセマンティクスを減らしてIDデータのバランスをとる。
しかし、この削減はIDデータの分類精度に深刻な影響を及ぼす可能性がある。
このタスクの主な課題は、テールクラスの機能の深刻な欠如であり、OODデータとの混同につながります。
この問題に対処するために,削減ではなく拡張を用いたPATT法を提案する。
我々の主な直感は、von Mises-Fisher(vMF)分布を混合してIDデータと温度スケーリングモジュールをモデル化し、IDデータの信頼性を高めることである。
これにより、IDとOODデータの区別を促進しながら、IDクラスのセマンティクスを暗黙的に強化し、無限のコントラスト対を生成することができる。
IDデータの分類性能を損なうことなくOODデータの検出をさらに強化するため,推測フェーズにおける特徴キャリブレーションを提案する。
テールクラスを優先し、OODデータの信頼性を低下させる訓練セットから注意重みを抽出することにより、OOD検出能力を向上する。
大規模実験により,本手法は様々なベンチマークにおいて最先端の手法よりも優れていることを確認した。
関連論文リスト
- What If the Input is Expanded in OOD Detection? [77.37433624869857]
Out-of-distriion (OOD) 検出は未知のクラスからのOOD入力を特定することを目的としている。
In-distriion(ID)データと区別するために,様々なスコアリング関数を提案する。
入力空間に異なる共通の汚職を用いるという、新しい視点を導入する。
論文 参考訳(メタデータ) (2024-10-24T06:47:28Z) - Margin-bounded Confidence Scores for Out-of-Distribution Detection [2.373572816573706]
本稿では,非自明なOOD検出問題に対処するため,Margin bounded Confidence Scores (MaCS) と呼ばれる新しい手法を提案する。
MaCS は ID と OOD のスコアの差を拡大し、決定境界をよりコンパクトにする。
画像分類タスクのための様々なベンチマークデータセットの実験により,提案手法の有効性が示された。
論文 参考訳(メタデータ) (2024-09-22T05:40:25Z) - EAT: Towards Long-Tailed Out-of-Distribution Detection [55.380390767978554]
本稿では,長い尾を持つOOD検出の課題に対処する。
主な困難は、尾クラスに属するサンプルとOODデータを区別することである。
本稿では,(1)複数の禁制クラスを導入して分布内クラス空間を拡大すること,(2)コンテキストリッチなOODデータに画像をオーバーレイすることでコンテキスト限定のテールクラスを拡大すること,の2つの簡単な考え方を提案する。
論文 参考訳(メタデータ) (2023-12-14T13:47:13Z) - Out-of-distribution Detection Learning with Unreliable
Out-of-distribution Sources [73.28967478098107]
アウト・オブ・ディストリビューション(OOD)検出は、予測者が有効な予測を行うことができないOODデータをイン・ディストリビューション(ID)データとして識別する。
通常、OODパターンを識別できる予測器をトレーニングするために、実際のアウト・オブ・ディストリビューション(OOD)データを収集するのは困難である。
本稿では,Auxiliary Task-based OOD Learning (ATOL) というデータ生成に基づく学習手法を提案する。
論文 参考訳(メタデータ) (2023-11-06T16:26:52Z) - From Global to Local: Multi-scale Out-of-distribution Detection [129.37607313927458]
アウト・オブ・ディストリビューション(OOD)検出は、イン・ディストリビューション(ID)トレーニングプロセス中にラベルが見られない未知のデータを検出することを目的としている。
近年の表現学習の進歩により,距離に基づくOOD検出がもたらされる。
グローバルな視覚情報と局所的な情報の両方を活用する第1のフレームワークであるマルチスケールOOD検出(MODE)を提案する。
論文 参考訳(メタデータ) (2023-08-20T11:56:25Z) - Conservative Prediction via Data-Driven Confidence Minimization [70.93946578046003]
機械学習の安全性クリティカルな応用においては、モデルが保守的であることが望ましいことが多い。
本研究では,不確実性データセットに対する信頼性を最小化するデータ駆動信頼性最小化フレームワークを提案する。
論文 参考訳(メタデータ) (2023-06-08T07:05:36Z) - Out-of-Distribution Detection with Hilbert-Schmidt Independence
Optimization [114.43504951058796]
異常検出タスクはAIの安全性において重要な役割を担っている。
ディープニューラルネットワーク分類器は通常、アウト・オブ・ディストリビューション(OOD)の入力を、信頼性の高いイン・ディストリビューション・クラスに誤って分類する傾向がある。
我々は,OOD検出タスクにおいて実用的かつ理論的に有効な代替確率論的パラダイムを提案する。
論文 参考訳(メタデータ) (2022-09-26T15:59:55Z) - Augmenting Softmax Information for Selective Classification with
Out-of-Distribution Data [7.221206118679026]
既存のポストホック法はOOD検出でのみ評価した場合とは大きく異なる性能を示す。
本稿では,特徴に依存しない情報を用いて,ソフトマックスに基づく信頼度を向上するSCOD(Softmax Information Retaining Combination, SIRC)の新たな手法を提案する。
多様なImageNetスケールのデータセットと畳み込みニューラルネットワークアーキテクチャの実験は、SIRCがSCODのベースラインを一貫して一致または上回っていることを示している。
論文 参考訳(メタデータ) (2022-07-15T14:39:57Z) - No Shifted Augmentations (NSA): compact distributions for robust
self-supervised Anomaly Detection [4.243926243206826]
教師なし異常検出(AD)は正規化の概念を構築し、分布内(ID)と分布外(OOD)データを区別する必要がある。
我々は,ID特徴分布のエンフ幾何学的コンパクト性によって,外乱の分離や検出が容易になるかを検討する。
我々は,IDデータのコンパクトな分布を学習可能にする自己教師型特徴学習ステップに,新たなアーキテクチャ変更を提案する。
論文 参考訳(メタデータ) (2022-03-19T15:55:32Z) - Training OOD Detectors in their Natural Habitats [31.565635192716712]
アウト・オブ・ディストリビューション(OOD)検出は、野生にデプロイされた機械学習モデルにとって重要である。
近年の手法では,OOD検出の改善のために補助外乱データを用いてモデルを正規化している。
我々は、自然にIDとOODの両方のサンプルで構成される野生の混合データを活用する新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2022-02-07T15:38:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。