論文の概要: Fast-and-Frugal Text-Graph Transformers are Effective Link Predictors
- arxiv url: http://arxiv.org/abs/2408.06778v1
- Date: Tue, 13 Aug 2024 10:04:29 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-14 17:56:13.626489
- Title: Fast-and-Frugal Text-Graph Transformers are Effective Link Predictors
- Title(参考訳): 高速かつフルーガルなテキストグラフ変換器は効果的なリンク予測器である
- Authors: Andrei C. Coman, Christos Theodoropoulos, Marie-Francine Moens, James Henderson,
- Abstract要約: リンク予測モデルは、エンティティとリレーションのテキスト記述を取り入れることで、動的グラフに完全に帰納的学習と柔軟性を実現することができる。
本稿では,テキスト記述とグラフ構造を効果的に統合し,リソース集約型テキストエンコーダへの依存を減らすトランスフォーマーベースのアプローチを提案する。
本稿では,FnF-TG(Fast-and-Frugal Text-Graph)トランスフォーマーの高速化とスケーラビリティを両立させながら,従来の最先端手法よりも優れた性能を実現していることを示す。
- 参考スコア(独自算出の注目度): 28.403174369346715
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Link prediction models can benefit from incorporating textual descriptions of entities and relations, enabling fully inductive learning and flexibility in dynamic graphs. We address the challenge of also capturing rich structured information about the local neighbourhood of entities and their relations, by introducing a Transformer-based approach that effectively integrates textual descriptions with graph structure, reducing the reliance on resource-intensive text encoders. Our experiments on three challenging datasets show that our Fast-and-Frugal Text-Graph (FnF-TG) Transformers achieve superior performance compared to the previous state-of-the-art methods, while maintaining efficiency and scalability.
- Abstract(参考訳): リンク予測モデルは、エンティティとリレーションのテキスト記述を取り入れることで、動的グラフに完全に帰納的学習と柔軟性を実現することができる。
テキスト記述とグラフ構造を効果的に統合し,リソース集約型テキストエンコーダへの依存を軽減し,トランスフォーマーベースのアプローチを導入することで,エンティティとその関係に関するリッチな構造化情報を取得するという課題にも対処する。
本稿では,FnF-TG(Fast-and-Frugal Text-Graph)トランスフォーマーの高速化とスケーラビリティを両立させながら,従来の最先端手法よりも優れた性能を実現していることを示す。
関連論文リスト
- Graph-Augmented Relation Extraction Model with LLMs-Generated Support Document [7.0421339410165045]
本研究では,文レベルの関係抽出(RE)に対する新しいアプローチを提案する。
グラフニューラルネットワーク(GNN)とLarge Language Models(LLM)を統合し、コンテキストに富んだサポートドキュメントを生成する。
そこで,CrossREデータセットを用いて実験を行い,本手法の有効性を実証した。
論文 参考訳(メタデータ) (2024-10-30T20:48:34Z) - A Pure Transformer Pretraining Framework on Text-attributed Graphs [50.833130854272774]
グラフ構造を先行として扱うことで,特徴中心の事前学習の視点を導入する。
我々のフレームワークであるGraph Sequence Pretraining with Transformer (GSPT)はランダムウォークを通してノードコンテキストをサンプリングする。
GSPTはノード分類とリンク予測の両方に容易に適応でき、様々なデータセットで有望な経験的成功を示す。
論文 参考訳(メタデータ) (2024-06-19T22:30:08Z) - TAGA: Text-Attributed Graph Self-Supervised Learning by Synergizing Graph and Text Mutual Transformations [15.873944819608434]
Text-Attributed Graphs (TAG)は、自然言語記述によるグラフ構造を強化する。
本稿では,TAGの構造的・意味的次元を統合した,新たな自己教師型学習フレームワークであるText-And-Graph Multi-View Alignment(TAGA)を紹介する。
本フレームワークは,8つの実世界のデータセットを対象としたゼロショットおよび少数ショットシナリオにおいて,強力なパフォーマンスを示す。
論文 参考訳(メタデータ) (2024-05-27T03:40:16Z) - Text2Data: Low-Resource Data Generation with Textual Control [104.38011760992637]
自然言語は、人間が機械とシームレスに対話するための共通かつ直接的な制御信号として機能する。
ラベルのないデータを用いて教師なし拡散モデルを用いて基礎となるデータ分布を理解する新しいアプローチであるText2Dataを提案する。
制御性を確保し、破滅的な忘れを効果的に防止する、新しい制約最適化ベースの学習目標を通じて制御可能な微調整を行う。
論文 参考訳(メタデータ) (2024-02-08T03:41:39Z) - GADePo: Graph-Assisted Declarative Pooling Transformers for Document-Level Relation Extraction [28.403174369346715]
本稿では,共同テキストグラフ変換モデルとグラフ支援宣言型プール(GADePo)仕様を導入する。
GADePoにより、プールプロセスはドメイン固有の知識や望ましい結果によってガイドされるが、Transformerによって学習される。
提案手法は,手書きプーリング関数により達成された結果よりも一貫した有望な結果が得られることを示す。
論文 参考訳(メタデータ) (2023-08-28T09:04:03Z) - FactGraph: Evaluating Factuality in Summarization with Semantic Graph
Representations [114.94628499698096]
文書と要約を構造化された意味表現(MR)に分解するFactGraphを提案する。
MRは、コアセマンティックの概念とその関係を記述し、文書と要約の両方の主要な内容を標準形式で集約し、データの疎結合を減少させる。
事実性を評価するための異なるベンチマークの実験では、FactGraphは以前のアプローチよりも最大15%優れていた。
論文 参考訳(メタデータ) (2022-04-13T16:45:33Z) - Dynamic Graph Representation Learning via Graph Transformer Networks [41.570839291138114]
動的グラフ変換器 (DGT) を用いた動的グラフ学習手法を提案する。
DGTは、グラフトポロジを効果的に学習し、暗黙のリンクをキャプチャするための時空間符号化を持つ。
DGTはいくつかの最先端のベースラインと比較して優れた性能を示す。
論文 参考訳(メタデータ) (2021-11-19T21:44:23Z) - HETFORMER: Heterogeneous Transformer with Sparse Attention for Long-Text
Extractive Summarization [57.798070356553936]
HETFORMERはトランスフォーマーをベースとした事前学習モデルであり、抽出要約のための多粒度スパースアテンションを持つ。
単一文書と複数文書の要約タスクの実験から,HETFORMERがルージュF1の最先端性能を達成することが示された。
論文 参考訳(メタデータ) (2021-10-12T22:42:31Z) - Structure-Augmented Text Representation Learning for Efficient Knowledge
Graph Completion [53.31911669146451]
人為的な知識グラフは、様々な自然言語処理タスクに重要な支援情報を提供する。
これらのグラフは通常不完全であり、自動補完を促す。
グラフ埋め込みアプローチ(例えばTransE)は、グラフ要素を密度の高い埋め込みに表現することで構造化された知識を学ぶ。
テキストエンコーディングアプローチ(KG-BERTなど)は、グラフトリプルのテキストとトリプルレベルの文脈化表現を利用する。
論文 参考訳(メタデータ) (2020-04-30T13:50:34Z) - Exploiting Structured Knowledge in Text via Graph-Guided Representation
Learning [73.0598186896953]
本稿では、知識グラフからのガイダンスを用いて、生テキスト上で学習する2つの自己教師型タスクを提案する。
エンティティレベルのマスキング言語モデルに基づいて、最初のコントリビューションはエンティティマスキングスキームです。
既存のパラダイムとは対照的に,本手法では事前学習時にのみ,知識グラフを暗黙的に使用する。
論文 参考訳(メタデータ) (2020-04-29T14:22:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。