論文の概要: Fast-and-Frugal Text-Graph Transformers are Effective Link Predictors
- arxiv url: http://arxiv.org/abs/2408.06778v2
- Date: Tue, 8 Oct 2024 15:10:30 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-08 07:53:35.826916
- Title: Fast-and-Frugal Text-Graph Transformers are Effective Link Predictors
- Title(参考訳): 高速かつフルーガルなテキストグラフ変換器は効果的なリンク予測器である
- Authors: Andrei C. Coman, Christos Theodoropoulos, Marie-Francine Moens, James Henderson,
- Abstract要約: リンク予測モデルは、エンティティとリレーションのテキスト記述を取り入れることで、動的グラフに完全に帰納的学習と柔軟性を実現することができる。
本稿では,テキスト記述とグラフ構造を効果的に統合し,リソース集約型テキストエンコーダへの依存を減らすトランスフォーマーベースのアプローチを提案する。
本稿では,FnF-TG(Fast-and-Frugal Text-Graph)トランスフォーマーの高速化とスケーラビリティを両立させながら,従来の最先端手法よりも優れた性能を実現していることを示す。
- 参考スコア(独自算出の注目度): 28.403174369346715
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Link prediction models can benefit from incorporating textual descriptions of entities and relations, enabling fully inductive learning and flexibility in dynamic graphs. We address the challenge of also capturing rich structured information about the local neighbourhood of entities and their relations, by introducing a Transformer-based approach that effectively integrates textual descriptions with graph structure, reducing the reliance on resource-intensive text encoders. Our experiments on three challenging datasets show that our Fast-and-Frugal Text-Graph (FnF-TG) Transformers achieve superior performance compared to the previous state-of-the-art methods, while maintaining efficiency and scalability.
- Abstract(参考訳): リンク予測モデルは、エンティティとリレーションのテキスト記述を取り入れることで、動的グラフに完全に帰納的学習と柔軟性を実現することができる。
テキスト記述とグラフ構造を効果的に統合し,リソース集約型テキストエンコーダへの依存を軽減し,トランスフォーマーベースのアプローチを導入することで,エンティティとその関係に関するリッチな構造化情報を取得するという課題にも対処する。
本稿では,FnF-TG(Fast-and-Frugal Text-Graph)トランスフォーマーの高速化とスケーラビリティを両立させながら,従来の最先端手法よりも優れた性能を実現していることを示す。
関連論文リスト
- A Pure Transformer Pretraining Framework on Text-attributed Graphs [50.833130854272774]
グラフ構造を先行として扱うことで,特徴中心の事前学習の視点を導入する。
我々のフレームワークであるGraph Sequence Pretraining with Transformer (GSPT)はランダムウォークを通してノードコンテキストをサンプリングする。
GSPTはノード分類とリンク予測の両方に容易に適応でき、様々なデータセットで有望な経験的成功を示す。
論文 参考訳(メタデータ) (2024-06-19T22:30:08Z) - IntCoOp: Interpretability-Aware Vision-Language Prompt Tuning [94.52149969720712]
IntCoOpは、プロンプトチューニング中に属性レベルの帰納バイアスとクラス埋め込みを共同で調整することを学ぶ。
IntCoOpは10種類のデータセットの平均パフォーマンスを7.35%改善した。
論文 参考訳(メタデータ) (2024-06-19T16:37:31Z) - Deja vu: Contrastive Historical Modeling with Prefix-tuning for Temporal Knowledge Graph Reasoning [16.408149489677154]
ChapTERは、テンポラル推論のためのプレフィックスチューニングを備えたコントラスト歴史モデリングフレームワークである。
我々は4つのトランスダクティブと3つの数ショットインダクティブTKGRベンチマークでChapTERを評価した。
論文 参考訳(メタデータ) (2024-03-25T17:25:40Z) - Unifying Structured Data as Graph for Data-to-Text Pre-Training [69.96195162337793]
Data-to-text (D2T) の生成は、構造化されたデータを自然言語テキストに変換することを目的としている。
データからテキストへの事前学習は、D2T生成の強化に強力であることが証明された。
構造強化トランスを設計し,D2T生成のための構造強化事前学習手法を提案する。
論文 参考訳(メタデータ) (2024-01-02T12:23:49Z) - Bi-Link: Bridging Inductive Link Predictions from Text via Contrastive
Learning of Transformers and Prompts [2.9972063833424216]
本稿では,確率論的構文をリンク予測に役立てた比較学習フレームワークBi-Linkを提案する。
BERTの文法的知識を用いて,大規模知識グラフに一般化する学習的構文パターンに従って,関係性プロンプトを効率的に探索する。
我々の実験では、Bi-Linkはリンク予測データセットの最近のベースラインよりも優れています。
論文 参考訳(メタデータ) (2022-10-26T04:31:07Z) - FactGraph: Evaluating Factuality in Summarization with Semantic Graph
Representations [114.94628499698096]
文書と要約を構造化された意味表現(MR)に分解するFactGraphを提案する。
MRは、コアセマンティックの概念とその関係を記述し、文書と要約の両方の主要な内容を標準形式で集約し、データの疎結合を減少させる。
事実性を評価するための異なるベンチマークの実験では、FactGraphは以前のアプローチよりも最大15%優れていた。
論文 参考訳(メタデータ) (2022-04-13T16:45:33Z) - HETFORMER: Heterogeneous Transformer with Sparse Attention for Long-Text
Extractive Summarization [57.798070356553936]
HETFORMERはトランスフォーマーをベースとした事前学習モデルであり、抽出要約のための多粒度スパースアテンションを持つ。
単一文書と複数文書の要約タスクの実験から,HETFORMERがルージュF1の最先端性能を達成することが示された。
論文 参考訳(メタデータ) (2021-10-12T22:42:31Z) - Structure-Augmented Text Representation Learning for Efficient Knowledge
Graph Completion [53.31911669146451]
人為的な知識グラフは、様々な自然言語処理タスクに重要な支援情報を提供する。
これらのグラフは通常不完全であり、自動補完を促す。
グラフ埋め込みアプローチ(例えばTransE)は、グラフ要素を密度の高い埋め込みに表現することで構造化された知識を学ぶ。
テキストエンコーディングアプローチ(KG-BERTなど)は、グラフトリプルのテキストとトリプルレベルの文脈化表現を利用する。
論文 参考訳(メタデータ) (2020-04-30T13:50:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。