論文の概要: ED$^4$: Explicit Data-level Debiasing for Deepfake Detection
- arxiv url: http://arxiv.org/abs/2408.06779v1
- Date: Tue, 13 Aug 2024 10:05:20 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-14 17:56:13.621170
- Title: ED$^4$: Explicit Data-level Debiasing for Deepfake Detection
- Title(参考訳): ED$^4$: ディープフェイク検出のための明示的なデータレベルのデバイアス
- Authors: Jikang Cheng, Ying Zhang, Qin Zou, Zhiyuan Yan, Chao Liang, Zhongyuan Wang, Chen Li,
- Abstract要約: 限られたデータから固有のバイアスを学習することは、一般化可能なディープフェイク検出の失敗の主な原因と考えられている。
データレベルで上記のバイアスに明示的に対処するためのシンプルで効果的な戦略であるED$4$を提示します。
我々は,既存のディープフェイク検出手法よりも有効性と優位性を示すため,広範囲な実験を行った。
- 参考スコア(独自算出の注目度): 24.695989108814018
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Learning intrinsic bias from limited data has been considered the main reason for the failure of deepfake detection with generalizability. Apart from the discovered content and specific-forgery bias, we reveal a novel spatial bias, where detectors inertly anticipate observing structural forgery clues appearing at the image center, also can lead to the poor generalization of existing methods. We present ED$^4$, a simple and effective strategy, to address aforementioned biases explicitly at the data level in a unified framework rather than implicit disentanglement via network design. In particular, we develop ClockMix to produce facial structure preserved mixtures with arbitrary samples, which allows the detector to learn from an exponentially extended data distribution with much more diverse identities, backgrounds, local manipulation traces, and the co-occurrence of multiple forgery artifacts. We further propose the Adversarial Spatial Consistency Module (AdvSCM) to prevent extracting features with spatial bias, which adversarially generates spatial-inconsistent images and constrains their extracted feature to be consistent. As a model-agnostic debiasing strategy, ED$^4$ is plug-and-play: it can be integrated with various deepfake detectors to obtain significant benefits. We conduct extensive experiments to demonstrate its effectiveness and superiority over existing deepfake detection approaches.
- Abstract(参考訳): 限られたデータから固有のバイアスを学習することは、一般化可能なディープフェイク検出の失敗の主な原因と考えられている。
検出された内容と特定の偽造バイアスとは別に、検出器が画像中心に現れる構造的偽造の手がかりを慣性的に予測する新しい空間バイアスが、既存の手法の一般化に繋がる可能性がある。
ネットワーク設計による暗黙の絡み合いではなく、上記のバイアスを統一されたフレームワークにおけるデータレベルで明示的に解決するための、単純で効果的な戦略であるED$^4$を提案する。
特に,任意のサンプルを用いた顔構造保存混合物を生成するためにClockMixを開発した。これにより,より多様なアイデンティティ,背景,局所的な操作トレース,および複数の偽物の共起による指数関数的に拡張されたデータ分布から学習することができる。
さらに,空間バイアスのある特徴の抽出を防止するためのAdvSCM(Adversarial Spatial Consistency Module)を提案する。
モデルに依存しないデビアシング戦略として、ED$^4$はプラグアンドプレイであり、様々なディープフェイク検出器と統合して大きな利益を得ることができる。
我々は,既存のディープフェイク検出手法よりも有効性と優位性を示すため,広範囲な実験を行った。
関連論文リスト
- DIP: Diffusion Learning of Inconsistency Pattern for General DeepFake Detection [18.116004258266535]
ディフュージョン不整合学習(DIP)のためのトランスフォーマーベースフレームワークを提案する。
提案手法は,偽の手がかりを効果的に同定し,最先端のパフォーマンスを実現する。
論文 参考訳(メタデータ) (2024-10-31T06:26:00Z) - Generative Edge Detection with Stable Diffusion [52.870631376660924]
エッジ検出は一般的に、主に識別法によって対処されるピクセルレベルの分類問題と見なされる。
本稿では、事前学習した安定拡散モデルのポテンシャルを十分に活用して、GED(Generative Edge Detector)という新しい手法を提案する。
複数のデータセットに対して広範な実験を行い、競争性能を達成する。
論文 参考訳(メタデータ) (2024-10-04T01:52:23Z) - Regularized Contrastive Partial Multi-view Outlier Detection [76.77036536484114]
RCPMOD(Regularized Contrastive partial Multi-view Outlier Detection)と呼ばれる新しい手法を提案する。
このフレームワークでは、コントラスト学習を利用して、ビュー一貫性のある情報を学び、一貫性の度合いでアウトレイラを識別する。
4つのベンチマークデータセットによる実験結果から,提案手法が最先端の競合より優れていることが示された。
論文 参考訳(メタデータ) (2024-08-02T14:34:27Z) - Detecting Adversarial Data via Perturbation Forgery [28.637963515748456]
逆検出は、自然データと逆データの間の分布とノイズパターンの相違に基づいて、データフローから逆データを特定し、フィルタリングすることを目的としている。
不均衡および異方性雑音パターンを回避した生成モデルに基づく新しい攻撃
本研究では,ノイズ分布の摂動,スパースマスク生成,擬似対向データ生成を含む摂動フォージェリを提案し,未知の勾配に基づく,生成モデルに基づく,物理的対向攻撃を検出することができる対向検出器を訓練する。
論文 参考訳(メタデータ) (2024-05-25T13:34:16Z) - Transcending Forgery Specificity with Latent Space Augmentation for Generalizable Deepfake Detection [57.646582245834324]
LSDAと呼ばれる簡易で効果的なディープフェイク検出器を提案する。
より多様な偽の表現は、より一般化可能な決定境界を学べるべきである。
提案手法は驚くほど有効であり, 広く使用されている複数のベンチマークで最先端の検出器を超越することを示す。
論文 参考訳(メタデータ) (2023-11-19T09:41:10Z) - Self-Supervised Graph Transformer for Deepfake Detection [1.8133635752982105]
ディープフェイク検出手法は、与えられたデータセット内の偽造を認識できる有望な結果を示している。
ディープフェイク検出システムは、一般的な検出性能を保証するために、偽造タイプ、外観、品質に欠かせないままでいなければならない。
本研究では、自己教師付き事前学習モデルを利用して、例外的な一般化能力を実現するディープフェイク検出フレームワークを提案する。
論文 参考訳(メタデータ) (2023-07-27T17:22:41Z) - Spatial-Frequency Discriminability for Revealing Adversarial Perturbations [53.279716307171604]
敵の摂動に対するディープニューラルネットワークの脆弱性は、コンピュータビジョンコミュニティで広く認識されている。
現在のアルゴリズムは、通常、自然および敵対的なデータの識別的分解を通じて、敵のパターンを検出する。
空間周波数Krawtchouk分解に基づく識別検出器を提案する。
論文 参考訳(メタデータ) (2023-05-18T10:18:59Z) - FedForgery: Generalized Face Forgery Detection with Residual Federated
Learning [87.746829550726]
既存の顔偽造検出方法は、取得した共有データや集中データを直接利用して訓練を行う。
顔偽造検出のための一般化された残留フェデレーション学習(FedForgery)を提案する。
顔偽造検出データセットを公開して行った実験は、提案したFedForgeryの優れた性能を証明している。
論文 参考訳(メタデータ) (2022-10-18T03:32:18Z) - Towards Real-World Prohibited Item Detection: A Large-Scale X-ray
Benchmark [53.9819155669618]
本稿では,PIDrayと命名された大規模データセットについて述べる。
大量の努力を払って、私たちのデータセットには、高品質な注釈付きセグメンテーションマスクとバウンディングボックスを備えた47,677ドルのX線画像に、禁止アイテムの12ドルカテゴリが含まれています。
提案手法は最先端の手法に対して,特に故意に隠された項目を検出するために好適に機能する。
論文 参考訳(メタデータ) (2021-08-16T11:14:16Z) - Line-Circle-Square (LCS): A Multilayered Geometric Filter for Edge-Based
Detection [2.4054377316708964]
提案フィルタは,設定された各専門家に対して,過度に計算せずにシーンを判断するための高レベル情報を抽出するために,検出,追跡,学習を行う。
本実験は,実験と実世界の両方のシナリオにおいて,検出精度と資源使用量の観点から,提案フィルタの有効性を検証した。
論文 参考訳(メタデータ) (2020-08-21T05:28:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。