論文の概要: Structure-preserving Planar Simplification for Indoor Environments
- arxiv url: http://arxiv.org/abs/2408.06814v2
- Date: Wed, 21 Aug 2024 10:32:43 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-22 21:36:42.791327
- Title: Structure-preserving Planar Simplification for Indoor Environments
- Title(参考訳): 室内環境における構造保存型平面簡易化
- Authors: Bishwash Khanal, Sanjay Rijal, Manish Awale, Vaghawan Ojha,
- Abstract要約: 本稿では,屋内シーンポイント雲の構造保存型平面簡易化のための新しい手法を提案する。
キャプチャされた各シーンを、構造化された(壁焼床)と非構造化された(屋内オブジェクト)のシーンに分割する。
天井と床を正確に表現するために,壁面の正常性に対して天井と床のメッシュを切断するメッシュクリッピングアルゴリズムを用いる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper presents a novel approach for structure-preserving planar simplification of indoor scene point clouds for both simulated and real-world environments. Initially, the scene point cloud undergoes preprocessing steps, including noise reduction and Manhattan world alignment, to ensure robustness and coherence in subsequent analyses. We segment each captured scene into structured (walls-ceiling-floor) and non-structured (indoor objects) scenes. Leveraging a RANSAC algorithm, we extract primitive planes from the input point cloud, facilitating the segmentation and simplification of the structured scene. The best-fitting wall meshes are then generated from the primitives, followed by adjacent mesh merging with the vertex-translation algorithm which preserves the mesh layout. To accurately represent ceilings and floors, we employ the mesh clipping algorithm which clips the ceiling and floor meshes with respect to wall normals. In the case of indoor scenes, we apply a surface reconstruction technique to enhance the fidelity. This paper focuses on the intricate steps of the proposed scene simplification methodology, addressing complex scenarios such as multi-story and slanted walls and ceilings. We also conduct qualitative and quantitative performance comparisons against popular surface reconstruction, shape approximation, and floorplan generation approaches.
- Abstract(参考訳): 本稿では,シミュレーション環境と実環境の両方を対象とした屋内シーンポイント雲の構造保存型平面簡易化手法を提案する。
当初、シーンポイントクラウドは、ノイズ低減やマンハッタンのワールドアライメントを含む前処理のステップを実行し、その後の分析において堅牢性と一貫性を確保する。
キャプチャされた各シーンを、構造化された(壁焼床)と非構造化された(屋内オブジェクト)のシーンに分割する。
RANSACアルゴリズムを用いて,入力点雲から原始平面を抽出し,構成シーンの分割と単純化を容易にする。
次に、最も適した壁メッシュがプリミティブから生成され、その後、メッシュレイアウトを保存する頂点変換アルゴリズムと隣のメッシュがマージされる。
天井と床を正確に表現するために,壁面の正常性に対して天井と床のメッシュを切断するメッシュクリッピングアルゴリズムを用いる。
屋内シーンでは,表面再構成技術を用いて忠実度を向上する。
本稿では,多階建てや斜めの壁,天井などの複雑なシナリオに対処する,シーン簡略化手法の複雑なステップに焦点を当てる。
また,一般的な表面再構成,形状近似,フロアプラン生成手法に対する定性的,定量的な性能比較を行った。
関連論文リスト
- FRI-Net: Floorplan Reconstruction via Room-wise Implicit Representation [18.157827697752317]
本研究では,FRI-Netと呼ばれる新しい3次元点雲からの2次元フロアプラン再構築手法を提案する。
フロアプランの幾何学的事前をトレーニング戦略に組み込むことにより、生成された部屋ポリゴンはより幾何学的に規則的である。
提案手法は,提案手法の有効性を実証し,提案手法の有効性を検証した。
論文 参考訳(メタデータ) (2024-07-15T13:01:44Z) - INPC: Implicit Neural Point Clouds for Radiance Field Rendering [5.64500060725726]
現実世界のシーンを再現し、新しい視点で合成するための新しいアプローチを提案する。
本研究では,連続オクツリー型確率場とマルチ解像度ハッシュグリッドにおける点雲を暗黙的に符号化するハイブリッドシーン表現を提案する。
本手法は,対話的なフレームレートで高速な推論を実現し,さらに性能を高めるために露骨な点雲を抽出することができる。
論文 参考訳(メタデータ) (2024-03-25T15:26:32Z) - GeoGaussian: Geometry-aware Gaussian Splatting for Scene Rendering [83.19049705653072]
ガウススプレイティング最適化の過程で、その構造が意図的に保存されていない場合、シーンの幾何学は徐々に悪化する。
我々はこの問題を緩和するためにGeoGaussianと呼ばれる新しいアプローチを提案する。
提案するパイプラインは、新しいビュー合成と幾何再構成において最先端の性能を達成する。
論文 参考訳(メタデータ) (2024-03-17T20:06:41Z) - A Framework for Building Point Cloud Cleaning, Plane Detection and
Semantic Segmentation [0.5439020425818999]
私たちは、取得したポイントクラウドデータからアウトリーチを取り除くことに集中しています。
クリーニング処理の後、ロバストなRANSACパラダイムを用いて平面検出を行う。
結果として得られたセグメントは、建物のアーキテクチャ要素を表す正確で詳細なポイントクラウドを生成することができる。
論文 参考訳(メタデータ) (2024-02-01T15:50:40Z) - Indoor Scene Reconstruction with Fine-Grained Details Using Hybrid Representation and Normal Prior Enhancement [50.56517624931987]
多視点RGB画像からの室内シーンの再構成は、平坦領域とテクスチャレス領域の共存により困難である。
近年の手法では、予測された表面正規化によって支援されたニューラルラジアンス場を利用してシーン形状を復元している。
本研究は, 上記の制限に対処して, 高忠実度表面を細かな詳細で再構築することを目的とする。
論文 参考訳(メタデータ) (2023-09-14T12:05:29Z) - Neural Kernel Surface Reconstruction [80.51581494300423]
本稿では,大規模でスパースでノイズの多い点雲から3次元暗示面を再構成する新しい手法を提案する。
我々のアプローチは、最近導入されたNeural Kernel Fields表現に基づいている。
論文 参考訳(メタデータ) (2023-05-31T06:25:18Z) - Pyramid Texture Filtering [86.15126028139736]
目立った構造を保ちながらテクスチャをスムーズにするための,シンプルだが効果的な手法を提案する。
ガウスピラミッドの粗いレベルは、しばしば自然にテクスチャを排除し、主要な画像構造を要約する。
本手法は, 異なるスケール, 局所的なコントラスト, 形状のテクスチャから構造を分離する上で, 構造劣化や視覚的アーティファクトの導入を伴わずに有効であることを示す。
論文 参考訳(メタデータ) (2023-05-11T02:05:30Z) - Temporally-Consistent Surface Reconstruction using Metrically-Consistent
Atlases [131.50372468579067]
そこで本稿では,時間変化点雲列から時間一貫性のある面列を復元する手法を提案する。
我々は、再構成された表面をニューラルネットワークによって計算されたアトラスとして表現し、フレーム間の対応性を確立することができる。
当社のアプローチは、いくつかの挑戦的なデータセットにおいて、最先端のものよりも優れています。
論文 参考訳(メタデータ) (2021-11-12T17:48:25Z) - Neural Subdivision [58.97214948753937]
本稿では,データ駆動型粗粒度モデリングの新しいフレームワークであるNeural Subdivisionを紹介する。
すべてのローカルメッシュパッチで同じネットワーク重みのセットを最適化するため、特定の入力メッシュや固定属、カテゴリに制約されないアーキテクチャを提供します。
単一の高分解能メッシュでトレーニングしても,本手法は新規な形状に対して合理的な区分を生成する。
論文 参考訳(メタデータ) (2020-05-04T20:03:21Z) - Scan2Plan: Efficient Floorplan Generation from 3D Scans of Indoor Scenes [9.71137838903781]
Scan2Planは,室内環境の構造要素の3次元スキャンから,フロアプランを正確に推定するための新しい手法である。
提案手法は、初期ステージがシーンの無秩序な点雲をクラスタリングする2段階のアプローチを取り入れたものである。
その後の段階では、各部屋について単純なポリゴンによってパラメータ化された閉周を推定する。
最後のフロアプランは、グローバル・コーディネート・システムにおけるすべての部屋周計の集合である。
論文 参考訳(メタデータ) (2020-03-16T17:59:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。