Causal Agent based on Large Language Model
- URL: http://arxiv.org/abs/2408.06849v1
- Date: Tue, 13 Aug 2024 12:22:26 GMT
- Title: Causal Agent based on Large Language Model
- Authors: Kairong Han, Kun Kuang, Ziyu Zhao, Junjian Ye, Fei Wu,
- Abstract summary: Large language models (LLMs) have achieved significant success across various domains.
The inherent complexity of causal problems and causal theory poses challenges in accurately describing them in natural language.
We have equipped the LLM with causal tools within an agent framework, named the Causal Agent, enabling it to tackle causal problems.
- Score: 30.81702479532088
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large language models (LLMs) have achieved significant success across various domains. However, the inherent complexity of causal problems and causal theory poses challenges in accurately describing them in natural language, making it difficult for LLMs to comprehend and use them effectively. Causal methods are not easily conveyed through natural language, which hinders LLMs' ability to apply them accurately. Additionally, causal datasets are typically tabular, while LLMs excel in handling natural language data, creating a structural mismatch that impedes effective reasoning with tabular data. This lack of causal reasoning capability limits the development of LLMs. To address these challenges, we have equipped the LLM with causal tools within an agent framework, named the Causal Agent, enabling it to tackle causal problems. The causal agent comprises tools, memory, and reasoning modules. In the tools module, the causal agent applies causal methods to align tabular data with natural language. In the reasoning module, the causal agent employs the ReAct framework to perform reasoning through multiple iterations with the tools. In the memory module, the causal agent maintains a dictionary instance where the keys are unique names and the values are causal graphs. To verify the causal ability of the causal agent, we established a benchmark consisting of four levels of causal problems: variable level, edge level, causal graph level, and causal effect level. We generated a test dataset of 1.3K using ChatGPT-3.5 for these four levels of issues and tested the causal agent on the datasets. Our methodology demonstrates remarkable efficacy on the four-level causal problems, with accuracy rates all above 80%. For further insights and implementation details, our code is accessible via the GitHub repository https://github.com/Kairong-Han/Causal_Agent.
Related papers
- Language Agents Meet Causality -- Bridging LLMs and Causal World Models [50.79984529172807]
We propose a framework that integrates causal representation learning with large language models.
This framework learns a causal world model, with causal variables linked to natural language expressions.
We evaluate the framework on causal inference and planning tasks across temporal scales and environmental complexities.
arXiv Detail & Related papers (2024-10-25T18:36:37Z) - CausalGraph2LLM: Evaluating LLMs for Causal Queries [49.337170619608145]
Causality is essential in scientific research, enabling researchers to interpret true relationships between variables.
With the recent advancements in Large Language Models (LLMs), there is an increasing interest in exploring their capabilities in causal reasoning.
arXiv Detail & Related papers (2024-10-21T12:12:21Z) - Counterfactual Causal Inference in Natural Language with Large Language Models [9.153187514369849]
We propose an end-to-end causal structure discovery and causal inference method from natural language.
We first use an LLM to extract the instantiated causal variables from text data and build a causal graph.
We then conduct counterfactual inference on the estimated graph.
arXiv Detail & Related papers (2024-10-08T21:53:07Z) - Are you still on track!? Catching LLM Task Drift with Activations [55.75645403965326]
Task drift allows attackers to exfiltrate data or influence the LLM's output for other users.
We show that a simple linear classifier can detect drift with near-perfect ROC AUC on an out-of-distribution test set.
We observe that this approach generalizes surprisingly well to unseen task domains, such as prompt injections, jailbreaks, and malicious instructions.
arXiv Detail & Related papers (2024-06-02T16:53:21Z) - Are LLMs Capable of Data-based Statistical and Causal Reasoning? Benchmarking Advanced Quantitative Reasoning with Data [89.2410799619405]
We introduce the Quantitative Reasoning with Data benchmark to evaluate Large Language Models' capability in statistical and causal reasoning with real-world data.
The benchmark comprises a dataset of 411 questions accompanied by data sheets from textbooks, online learning materials, and academic papers.
To compare models' quantitative reasoning abilities on data and text, we enrich the benchmark with an auxiliary set of 290 text-only questions, namely QRText.
arXiv Detail & Related papers (2024-02-27T16:15:03Z) - LLM4Causal: Democratized Causal Tools for Everyone via Large Language Model [7.052058110182703]
Large Language Models (LLMs) have shown their success in language understanding and reasoning on general topics.
We explore the possibility of fine-tuning an open-sourced LLM into LLM4Causal, which can identify the causal task, execute a corresponding function, and interpret its numerical results based on users' queries and the provided dataset.
arXiv Detail & Related papers (2023-12-28T16:59:06Z) - CLadder: Assessing Causal Reasoning in Language Models [82.8719238178569]
We investigate whether large language models (LLMs) can coherently reason about causality.
We propose a new NLP task, causal inference in natural language, inspired by the "causal inference engine" postulated by Judea Pearl et al.
arXiv Detail & Related papers (2023-12-07T15:12:12Z) - Can Large Language Models Infer Causation from Correlation? [104.96351414570239]
We test the pure causal inference skills of large language models (LLMs)
We formulate a novel task Corr2Cause, which takes a set of correlational statements and determines the causal relationship between the variables.
We show that these models achieve almost close to random performance on the task.
arXiv Detail & Related papers (2023-06-09T12:09:15Z) - Causal Reasoning and Large Language Models: Opening a New Frontier for Causality [29.433401785920065]
Large language models (LLMs) can generate causal arguments with high probability.
LLMs may be used by human domain experts to save effort in setting up a causal analysis.
arXiv Detail & Related papers (2023-04-28T19:00:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.