LoRA$^2$ : Multi-Scale Low-Rank Approximations for Fine-Tuning Large Language Models
- URL: http://arxiv.org/abs/2408.06854v1
- Date: Tue, 13 Aug 2024 12:31:30 GMT
- Title: LoRA$^2$ : Multi-Scale Low-Rank Approximations for Fine-Tuning Large Language Models
- Authors: Jia-Chen Zhang, Yu-Jie Xiong, He-Xi Qiu, Dong-Hai Zhu, Chun-Ming Xia,
- Abstract summary: Low-Rank Adaptation (LoRA) significantly reduces the number of trainable parameters for fine-tuning.
We extend the LoRA to multiple scales, dubbed as LoRA$2$.
- Score: 3.7049613588433497
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Fine-tuning large language models (LLMs) with high parameter efficiency for downstream tasks has become a new paradigm. Low-Rank Adaptation (LoRA) significantly reduces the number of trainable parameters for fine-tuning. Although it has demonstrated commendable performance, updating parameters within a single scale may not be the optimal choice for complex downstream tasks.In this paper, we extend the LoRA to multiple scales, dubbed as LoRA$^2$. We first combine orthogonal projection theory to train a set of LoRAs in two mutually orthogonal planes. Then, we improve the importance score algorithm, which reduce parameter sensitivity score calculations by approximately 98.5\%. By pruning singular values with lower importance scores, thereby enhancing adaptability to various downstream tasks. Extensive experiments are conducted on two widely used pre-trained models to validate the effectiveness of LoRA$^2$. Results show that it significantly reduces the number of trainable parameters to just 0.72\% compared to full fine-tuning, while still delivering highly impressive performance. Even when the parameters are further reduced to 0.17M, it still achieves comparable results to the baseline with 8 times more parameters. Our code is available here: https://anonymous.4open.science/r/LoRA-2-5B4C
Related papers
- LoRTA: Low Rank Tensor Adaptation of Large Language Models [70.32218116940393]
Low Rank Adaptation (LoRA) is a popular Efficient Fine Tuning (PEFT) method that effectively adapts large pre-trained models for downstream tasks.
We propose a novel approach that employs a low rank tensor parametrization for model updates.
Our method is both efficient and effective for fine-tuning large language models, achieving a substantial reduction in the number of parameters while maintaining comparable performance.
arXiv Detail & Related papers (2024-10-05T06:59:50Z) - LoRA-Pro: Are Low-Rank Adapters Properly Optimized? [121.0693322732454]
Low-rank adaptation, also known as LoRA, has emerged as a prominent method for parameter-efficient fine-tuning of foundation models.
Despite its computational efficiency, LoRA still yields inferior performance compared to full fine-tuning.
We introduce LoRA-Pro, a method that enhances LoRA's performance by strategically adjusting the gradients of low-rank matrices.
arXiv Detail & Related papers (2024-07-25T17:57:12Z) - SBoRA: Low-Rank Adaptation with Regional Weight Updates [19.15481369459963]
This paper introduces Standard Basis LoRA (SBoRA), a novel parameter-efficient fine-tuning approach for Large Language Models.
SBoRA reduces the number of trainable parameters by half or doubles the rank with the similar number of trainable parameters as LoRA.
Our results demonstrate the superiority of SBoRA-FA over LoRA in various fine-tuning tasks, including commonsense reasoning and arithmetic reasoning.
arXiv Detail & Related papers (2024-07-07T15:37:13Z) - LoRA-XS: Low-Rank Adaptation with Extremely Small Number of Parameters [11.23006032094776]
We introduce LoRA-XS, a novel low-rank adaptation method that considerably reduces the trainable parameters while showing superior or competitive performance.
LoRA-XS achieves a remarkable reduction of trainable parameters by over 100x in 7B models compared to LoRA.
arXiv Detail & Related papers (2024-05-27T19:07:13Z) - MELoRA: Mini-Ensemble Low-Rank Adapters for Parameter-Efficient Fine-Tuning [71.50432879573614]
Low-rank adaptation (LoRA) is based on the idea that the adaptation process is intrinsically low-dimensional.
We present MELoRA, a mini-ensemble low-rank adapters that uses fewer trainable parameters while maintaining a higher rank.
Our experimental results show that, compared to LoRA, MELoRA achieves better performance with 8 times fewer trainable parameters on natural language understanding tasks and 36 times fewer trainable parameters on instruction following tasks.
arXiv Detail & Related papers (2024-02-27T07:14:12Z) - DoRA: Weight-Decomposed Low-Rank Adaptation [57.68678247436207]
We introduce a novel weight decomposition analysis to investigate the inherent differences between FT and LoRA.
Aiming to resemble the learning capacity of FT from the findings, we propose Weight-Decomposed Low-Rank Adaptation (DoRA)
DoRA decomposes the pre-trained weight into two components, magnitude and direction, for fine-tuning.
arXiv Detail & Related papers (2024-02-14T17:59:34Z) - Chain of LoRA: Efficient Fine-tuning of Language Models via Residual
Learning [31.036465632204663]
We introduce Chain of LoRA, an iterative optimization framework inspired by the Frank-Wolfe algorithm.
We demonstrate that COLA can consistently outperform LoRA without additional computational or memory costs.
arXiv Detail & Related papers (2024-01-08T14:26:49Z) - AdaLoRA: Adaptive Budget Allocation for Parameter-Efficient Fine-Tuning [143.23123791557245]
Fine-tuning large pre-trained language models on downstream tasks has become an important paradigm in NLP.
We propose AdaLoRA, which adaptively allocates the parameter budget among weight matrices according to their importance score.
We conduct extensive experiments with several pre-trained models on natural language processing, question answering, and natural language generation to validate the effectiveness of AdaLoRA.
arXiv Detail & Related papers (2023-03-18T22:36:25Z) - LoRA: Low-Rank Adaptation of Large Language Models [71.75808607987281]
Low-Rank Adaptation, or LoRA, freezes the pre-trained model weights and injects trainable rank decomposition into each layer of the Transformer architecture.
For GPT-3, LoRA can reduce the number of trainable parameters by 10,000 times and the computation hardware requirement by 3 times compared to full fine-tuning.
arXiv Detail & Related papers (2021-06-17T17:37:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.