Parameter-Efficient Fine-Tuning of Large Language Models via Deconvolution in Subspace
- URL: http://arxiv.org/abs/2503.01419v1
- Date: Mon, 03 Mar 2025 11:15:50 GMT
- Title: Parameter-Efficient Fine-Tuning of Large Language Models via Deconvolution in Subspace
- Authors: Jia-Chen Zhang, Yu-Jie Xiong, Chun-Ming Xia, Dong-Hai Zhu, Xi-He Qiu,
- Abstract summary: Fine-tuning large language models (LLM) for various downstream tasks has become a new paradigm.<n>Low-Rank Adaptation (LoRA) is well-known for its parameter efficiency.<n>We propose a new method for.<n>Efficient decomposition- dubbed as DCFT- via deconvolution in subspace.
- Score: 3.7049613588433497
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large language model (LLM) is considered a milestone towards achieving Artificial General Intelligence (AGI). With its advanced emergent capabilities, it adapt to a wide range of specific applications. Fine-tuning LLMs for various downstream tasks has become a new paradigm. Low-Rank Adaptation (LoRA) is well-known for its parameter efficiency. It can reduce the number of parameters needed to fine-tune LLMs by several orders of magnitude. However, LoRA-based approaches encounter a significant limitation due to the bottleneck imposed by rank one decomposition. As the parameters count in LLMs increase, even rank one decomposition might surpass the number of parameters truly necessary for handling more downstream tasks. In this paper, we propose a new method for Parameter-Efficient Fine-Tuning (PEFT) via deconvolution in subspace, dubbed as DCFT. We innovatively use deconvolution to complete details and enhance knowledge in subspace incremental matrices, and dynamically control parameters by adjusting the kernel size, unconstrained by rank-one decomposition. Extensive experiments are conducted to validate the effectiveness of DCFT. Results show that compared to LoRA, DCFT achieve an 8$\times$ reduction in parameters, and still achieves highly impressive performance. Our code is available here: https://github.com/Godz-z/DCFT.
Related papers
- PointLoRA: Low-Rank Adaptation with Token Selection for Point Cloud Learning [54.99373314906667]
Self-supervised representation learning for point cloud has demonstrated effectiveness in improving pre-trained model performance across diverse tasks.
As pre-trained models grow in complexity, fully fine-tuning them for downstream applications demands substantial computational and storage resources.
We propose PointLoRA, a simple yet effective method that combines low-rank adaptation (LoRA) with multi-scale token selection to efficiently fine-tune point cloud models.
arXiv Detail & Related papers (2025-04-22T16:41:21Z) - Less is More: Extreme Gradient Boost Rank-1 Adaption for Efficient Finetuning of LLMs [75.11449420928139]
Fine-tuning Large Language Models (LLMs) has become a crucial technique for adapting pre-trained models to downstream tasks.
Low-Rank Adaptation (LoRA) has emerged as a promising solution, but there exists a gap between the practical performance of low-rank adaptations and its theoretical optimum.
We propose eXtreme Gradient Boosting LoRA, a novel framework that bridges this gap by leveraging the power of ensemble learning.
arXiv Detail & Related papers (2024-10-25T17:07:13Z) - LoLDU: Low-Rank Adaptation via Lower-Diag-Upper Decomposition for Parameter-Efficient Fine-Tuning [4.616740762629019]
Low-Rank Adaptation (LoRA) has sought to address the problem of handling the large updated parameters in full fine-tuning.
We propose LoLDU, a suboptimal-Efficient Fine-Tuning (PEFT) approach that significantly reduces trainable parameters by 2600 times.
arXiv Detail & Related papers (2024-10-17T14:51:17Z) - LoRTA: Low Rank Tensor Adaptation of Large Language Models [70.32218116940393]
Low Rank Adaptation (LoRA) is a popular Efficient Fine Tuning (PEFT) method.<n>We propose a higher-order Candecomp/Parafac (CP) decomposition, enabling a more compact and flexible representation.<n>Our method can achieve a reduction in the number of parameters while maintaining comparable performance.
arXiv Detail & Related papers (2024-10-05T06:59:50Z) - LoRA$^2$ : Multi-Scale Low-Rank Approximations for Fine-Tuning Large Language Models [3.7049613588433497]
Low-Rank Adaptation (LoRA) significantly reduces the number of trainable parameters for fine-tuning.
We extend the LoRA to multiple scales, dubbed as LoRA$2$.
arXiv Detail & Related papers (2024-08-13T12:31:30Z) - Structured Unrestricted-Rank Matrices for Parameter Efficient Fine-tuning [38.80020737321214]
We propose a framework for efficient parameter fine-tuning (PEFT) based on structured unrestricted-rank matrices (SURM)
SURMs achieve 5-7% accuracy gains on various image classification tasks while replacing low-rank matrices in LoRA.
It also results in up to 12x reduction of the number of parameters in adapters (with virtually no loss in quality) on the GLUE benchmark.
arXiv Detail & Related papers (2024-06-25T17:26:05Z) - Scaling Sparse Fine-Tuning to Large Language Models [67.59697720719672]
Large Language Models (LLMs) are difficult to fully fine-tune due to their sheer number of parameters.
We propose SpIEL, a novel sparse finetuning method which maintains an array of parameter indices and the deltas of these parameters relative to their pretrained values.
We show that SpIEL is superior to popular parameter-efficient fine-tuning methods like LoRA in terms of performance and comparable in terms of run time.
arXiv Detail & Related papers (2024-01-29T18:43:49Z) - NOLA: Compressing LoRA using Linear Combination of Random Basis [22.76088132446952]
We introduce NOLA, which overcomes the rank one lower bound present in LoRA.
NOLA performs as well as LoRA models with much fewer number of parameters compared to LoRA with rank one, the best compression LoRA can archive.
arXiv Detail & Related papers (2023-10-04T03:30:24Z) - IncreLoRA: Incremental Parameter Allocation Method for
Parameter-Efficient Fine-tuning [15.964205804768163]
IncreLoRA is an incremental parameter allocation method that adaptively adds trainable parameters during training.
We conduct extensive experiments on GLUE to demonstrate the effectiveness of IncreLoRA.
arXiv Detail & Related papers (2023-08-23T10:08:10Z) - Parameter-efficient Tuning of Large-scale Multimodal Foundation Model [68.24510810095802]
We propose A graceful prompt framework for cross-modal transfer (Aurora) to overcome these challenges.
Considering the redundancy in existing architectures, we first utilize the mode approximation to generate 0.1M trainable parameters to implement the multimodal prompt tuning.
A thorough evaluation on six cross-modal benchmarks shows that it not only outperforms the state-of-the-art but even outperforms the full fine-tuning approach.
arXiv Detail & Related papers (2023-05-15T06:40:56Z) - AdaLoRA: Adaptive Budget Allocation for Parameter-Efficient Fine-Tuning [143.23123791557245]
Fine-tuning large pre-trained language models on downstream tasks has become an important paradigm in NLP.
We propose AdaLoRA, which adaptively allocates the parameter budget among weight matrices according to their importance score.
We conduct extensive experiments with several pre-trained models on natural language processing, question answering, and natural language generation to validate the effectiveness of AdaLoRA.
arXiv Detail & Related papers (2023-03-18T22:36:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.