VNet: A GAN-based Multi-Tier Discriminator Network for Speech Synthesis Vocoders
- URL: http://arxiv.org/abs/2408.06906v1
- Date: Tue, 13 Aug 2024 14:00:02 GMT
- Title: VNet: A GAN-based Multi-Tier Discriminator Network for Speech Synthesis Vocoders
- Authors: Yubing Cao, Yongming Li, Liejun Wang, Yinfeng Yu,
- Abstract summary: VNet is a GAN-based neural vocoder network that incorporates full-band spectral information.
We demonstrate that the VNet model is capable of generating high-fidelity speech.
- Score: 14.222389985736422
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Since the introduction of Generative Adversarial Networks (GANs) in speech synthesis, remarkable achievements have been attained. In a thorough exploration of vocoders, it has been discovered that audio waveforms can be generated at speeds exceeding real-time while maintaining high fidelity, achieved through the utilization of GAN-based models. Typically, the inputs to the vocoder consist of band-limited spectral information, which inevitably sacrifices high-frequency details. To address this, we adopt the full-band Mel spectrogram information as input, aiming to provide the vocoder with the most comprehensive information possible. However, previous studies have revealed that the use of full-band spectral information as input can result in the issue of over-smoothing, compromising the naturalness of the synthesized speech. To tackle this challenge, we propose VNet, a GAN-based neural vocoder network that incorporates full-band spectral information and introduces a Multi-Tier Discriminator (MTD) comprising multiple sub-discriminators to generate high-resolution signals. Additionally, we introduce an asymptotically constrained method that modifies the adversarial loss of the generator and discriminator, enhancing the stability of the training process. Through rigorous experiments, we demonstrate that the VNet model is capable of generating high-fidelity speech and significantly improving the performance of the vocoder.
Related papers
- SpecDiff-GAN: A Spectrally-Shaped Noise Diffusion GAN for Speech and
Music Synthesis [0.0]
We introduce SpecDiff-GAN, a neural vocoder based on HiFi-GAN.
We show the merits of our proposed model for speech and music synthesis on several datasets.
arXiv Detail & Related papers (2024-01-30T09:17:57Z) - Locality-Aware Generalizable Implicit Neural Representation [54.93702310461174]
Generalizable implicit neural representation (INR) enables a single continuous function to represent multiple data instances.
We propose a novel framework for generalizable INR that combines a transformer encoder with a locality-aware INR decoder.
Our framework significantly outperforms previous generalizable INRs and validates the usefulness of the locality-aware latents for downstream tasks.
arXiv Detail & Related papers (2023-10-09T11:26:58Z) - Avocodo: Generative Adversarial Network for Artifact-free Vocoder [5.956832212419584]
We propose a GAN-based neural vocoder, called Avocodo, that allows the synthesis of high-fidelity speech with reduced artifacts.
Avocodo outperforms conventional GAN-based neural vocoders in both speech and singing voice synthesis tasks and can synthesize artifact-free speech.
arXiv Detail & Related papers (2022-06-27T15:54:41Z) - BigVGAN: A Universal Neural Vocoder with Large-Scale Training [49.16254684584935]
We present BigVGAN, a universal vocoder that generalizes well under various unseen conditions in zero-shot setting.
We introduce periodic nonlinearities and anti-aliased representation into the generator, which brings the desired inductive bias for waveform.
We train our GAN vocoder at the largest scale up to 112M parameters, which is unprecedented in the literature.
arXiv Detail & Related papers (2022-06-09T17:56:10Z) - SpecGrad: Diffusion Probabilistic Model based Neural Vocoder with
Adaptive Noise Spectral Shaping [51.698273019061645]
SpecGrad adapts the diffusion noise so that its time-varying spectral envelope becomes close to the conditioning log-mel spectrogram.
It is processed in the time-frequency domain to keep the computational cost almost the same as the conventional DDPM-based neural vocoders.
arXiv Detail & Related papers (2022-03-31T02:08:27Z) - NeuralDPS: Neural Deterministic Plus Stochastic Model with Multiband
Excitation for Noise-Controllable Waveform Generation [67.96138567288197]
We propose a novel neural vocoder named NeuralDPS which can retain high speech quality and acquire high synthesis efficiency and noise controllability.
It generates waveforms at least 280 times faster than the WaveNet vocoder.
It is also 28% faster than WaveGAN's synthesis efficiency on a single core.
arXiv Detail & Related papers (2022-03-05T08:15:29Z) - RefineGAN: Universally Generating Waveform Better than Ground Truth with
Highly Accurate Pitch and Intensity Responses [15.599745604729842]
We propose RefineGAN, a high-fidelity neural vocoder with faster-than-real-time generation capability.
We employ a pitch-guided refine architecture with a multi-scale spectrogram-based loss function to help stabilize the training process.
We show that the fidelity is even improved during the waveform reconstruction by eliminating defects produced by the speaker.
arXiv Detail & Related papers (2021-11-01T14:12:54Z) - Variational Autoencoders: A Harmonic Perspective [79.49579654743341]
We study Variational Autoencoders (VAEs) from the perspective of harmonic analysis.
We show that the encoder variance of a VAE controls the frequency content of the functions parameterised by the VAE encoder and decoder neural networks.
arXiv Detail & Related papers (2021-05-31T10:39:25Z) - Universal MelGAN: A Robust Neural Vocoder for High-Fidelity Waveform
Generation in Multiple Domains [1.8047694351309207]
We propose Universal MelGAN, a vocoder that synthesizes high-fidelity speech in multiple domains.
MelGAN-based structure is trained with a dataset of hundreds of speakers.
We added multi-resolution spectrogram discriminators to sharpen the spectral resolution of the generated waveforms.
arXiv Detail & Related papers (2020-11-19T03:35:45Z) - Conditioning Trick for Training Stable GANs [70.15099665710336]
We propose a conditioning trick, called difference departure from normality, applied on the generator network in response to instability issues during GAN training.
We force the generator to get closer to the departure from normality function of real samples computed in the spectral domain of Schur decomposition.
arXiv Detail & Related papers (2020-10-12T16:50:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.