RingFormer: A Neural Vocoder with Ring Attention and Convolution-Augmented Transformer
- URL: http://arxiv.org/abs/2501.01182v1
- Date: Thu, 02 Jan 2025 10:18:57 GMT
- Title: RingFormer: A Neural Vocoder with Ring Attention and Convolution-Augmented Transformer
- Authors: Seongho Hong, Yong-Hoon Choi,
- Abstract summary: RingFormer is a neural vocoder that incorporates the ring attention mechanism into a lightweight transformer variant, the convolution-augmented transformer (Conformer)
RingFormer is trained using adversarial training with two discriminators.
Experimental results show that RingFormer achieves comparable or superior performance to existing models, particularly excelling in real-time audio generation.
- Score: 0.0
- License:
- Abstract: While transformers demonstrate outstanding performance across various audio tasks, their application to neural vocoders remains challenging. Neural vocoders require the generation of long audio signals at the sample level, which demands high temporal resolution. This results in significant computational costs for attention map generation and limits their ability to efficiently process both global and local information. Additionally, the sequential nature of sample generation in neural vocoders poses difficulties for real-time processing, making the direct adoption of transformers impractical. To address these challenges, we propose RingFormer, a neural vocoder that incorporates the ring attention mechanism into a lightweight transformer variant, the convolution-augmented transformer (Conformer). Ring attention effectively captures local details while integrating global information, making it well-suited for processing long sequences and enabling real-time audio generation. RingFormer is trained using adversarial training with two discriminators. The proposed model is applied to the decoder of the text-to-speech model VITS and compared with state-of-the-art vocoders such as HiFi-GAN, iSTFT-Net, and BigVGAN under identical conditions using various objective and subjective metrics. Experimental results show that RingFormer achieves comparable or superior performance to existing models, particularly excelling in real-time audio generation. Our code and audio samples are available on GitHub.
Related papers
- VNet: A GAN-based Multi-Tier Discriminator Network for Speech Synthesis Vocoders [14.222389985736422]
VNet is a GAN-based neural vocoder network that incorporates full-band spectral information.
We demonstrate that the VNet model is capable of generating high-fidelity speech.
arXiv Detail & Related papers (2024-08-13T14:00:02Z) - Non-autoregressive real-time Accent Conversion model with voice cloning [0.0]
We have developed a non-autoregressive model for real-time accent conversion with voice cloning.
The model generates native-sounding L1 speech with minimal latency based on input L2 speech.
The model has the ability to save, clone and change the timbre, gender and accent of the speaker's voice in real time.
arXiv Detail & Related papers (2024-05-21T19:07:26Z) - From Discrete Tokens to High-Fidelity Audio Using Multi-Band Diffusion [84.138804145918]
Deep generative models can generate high-fidelity audio conditioned on various types of representations.
These models are prone to generate audible artifacts when the conditioning is flawed or imperfect.
We propose a high-fidelity multi-band diffusion-based framework that generates any type of audio modality from low-bitrate discrete representations.
arXiv Detail & Related papers (2023-08-02T22:14:29Z) - Diffsound: Discrete Diffusion Model for Text-to-sound Generation [78.4128796899781]
We propose a novel text-to-sound generation framework that consists of a text encoder, a Vector Quantized Variational Autoencoder (VQ-VAE), a decoder, and a vocoder.
The framework first uses the decoder to transfer the text features extracted from the text encoder to a mel-spectrogram with the help of VQ-VAE, and then the vocoder is used to transform the generated mel-spectrogram into a waveform.
arXiv Detail & Related papers (2022-07-20T15:41:47Z) - BigVGAN: A Universal Neural Vocoder with Large-Scale Training [49.16254684584935]
We present BigVGAN, a universal vocoder that generalizes well under various unseen conditions in zero-shot setting.
We introduce periodic nonlinearities and anti-aliased representation into the generator, which brings the desired inductive bias for waveform.
We train our GAN vocoder at the largest scale up to 112M parameters, which is unprecedented in the literature.
arXiv Detail & Related papers (2022-06-09T17:56:10Z) - RAVE: A variational autoencoder for fast and high-quality neural audio
synthesis [2.28438857884398]
We introduce a Realtime Audio Variational autoEncoder (RAVE) allowing both fast and high-quality audio waveform synthesis.
We show that our model is the first able to generate 48kHz audio signals, while simultaneously running 20 times faster than real-time on a standard laptop CPU.
arXiv Detail & Related papers (2021-11-09T09:07:30Z) - Timbre Transfer with Variational Auto Encoding and Cycle-Consistent
Adversarial Networks [0.6445605125467573]
This research project investigates the application of deep learning to timbre transfer, where the timbre of a source audio can be converted to the timbre of a target audio with minimal loss in quality.
The adopted approach combines Variational Autoencoders with Generative Adversarial Networks to construct meaningful representations of the source audio and produce realistic generations of the target audio.
arXiv Detail & Related papers (2021-09-05T15:06:53Z) - Conditioning Trick for Training Stable GANs [70.15099665710336]
We propose a conditioning trick, called difference departure from normality, applied on the generator network in response to instability issues during GAN training.
We force the generator to get closer to the departure from normality function of real samples computed in the spectral domain of Schur decomposition.
arXiv Detail & Related papers (2020-10-12T16:50:22Z) - Hierarchical Timbre-Painting and Articulation Generation [92.59388372914265]
We present a fast and high-fidelity method for music generation, based on specified f0 and loudness.
The synthesized audio mimics the timbre and articulation of a target instrument.
arXiv Detail & Related papers (2020-08-30T05:27:39Z) - Streaming automatic speech recognition with the transformer model [59.58318952000571]
We propose a transformer based end-to-end ASR system for streaming ASR.
We apply time-restricted self-attention for the encoder and triggered attention for the encoder-decoder attention mechanism.
Our proposed streaming transformer architecture achieves 2.8% and 7.2% WER for the "clean" and "other" test data of LibriSpeech.
arXiv Detail & Related papers (2020-01-08T18:58:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.