Towards Holistic Disease Risk Prediction using Small Language Models
- URL: http://arxiv.org/abs/2408.06943v1
- Date: Tue, 13 Aug 2024 15:01:33 GMT
- Title: Towards Holistic Disease Risk Prediction using Small Language Models
- Authors: Liv Björkdahl, Oskar Pauli, Johan Östman, Chiara Ceccobello, Sara Lundell, Magnus Kjellberg,
- Abstract summary: We introduce a framework that connects small language models to multiple data sources, aiming to predict the risk of various diseases simultaneously.
Our experiments encompass 12 different tasks within a multitask learning setup.
- Score: 2.137491464843808
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Data in the healthcare domain arise from a variety of sources and modalities, such as x-ray images, continuous measurements, and clinical notes. Medical practitioners integrate these diverse data types daily to make informed and accurate decisions. With recent advancements in language models capable of handling multimodal data, it is a logical progression to apply these models to the healthcare sector. In this work, we introduce a framework that connects small language models to multiple data sources, aiming to predict the risk of various diseases simultaneously. Our experiments encompass 12 different tasks within a multitask learning setup. Although our approach does not surpass state-of-the-art methods specialized for single tasks, it demonstrates competitive performance and underscores the potential of small language models for multimodal reasoning in healthcare.
Related papers
- A Survey of Medical Vision-and-Language Applications and Their Techniques [48.268198631277315]
Medical vision-and-language models (MVLMs) have attracted substantial interest due to their capability to offer a natural language interface for interpreting complex medical data.
Here, we provide a comprehensive overview of MVLMs and the various medical tasks to which they have been applied.
We also examine the datasets used for these tasks and compare the performance of different models based on standardized evaluation metrics.
arXiv Detail & Related papers (2024-11-19T03:27:05Z) - MedViLaM: A multimodal large language model with advanced generalizability and explainability for medical data understanding and generation [40.9095393430871]
We introduce MedViLaM, a unified vision-language model towards a generalist model for medical data.
MedViLaM can flexibly encode and interpret various forms of medical data, including clinical language and imaging.
We present instances of zero-shot generalization to new medical concepts and tasks, effective transfer learning across different tasks, and the emergence of zero-shot medical reasoning.
arXiv Detail & Related papers (2024-09-29T12:23:10Z) - Automated Ensemble Multimodal Machine Learning for Healthcare [52.500923923797835]
We introduce a multimodal framework, AutoPrognosis-M, that enables the integration of structured clinical (tabular) data and medical imaging using automated machine learning.
AutoPrognosis-M incorporates 17 imaging models, including convolutional neural networks and vision transformers, and three distinct multimodal fusion strategies.
arXiv Detail & Related papers (2024-07-25T17:46:38Z) - MMSci: A Dataset for Graduate-Level Multi-Discipline Multimodal Scientific Understanding [59.41495657570397]
This dataset includes figures such as schematic diagrams, simulated images, macroscopic/microscopic photos, and experimental visualizations.
We developed benchmarks for scientific figure captioning and multiple-choice questions, evaluating six proprietary and over ten open-source models.
The dataset and benchmarks will be released to support further research.
arXiv Detail & Related papers (2024-07-06T00:40:53Z) - FlexCare: Leveraging Cross-Task Synergy for Flexible Multimodal Healthcare Prediction [34.732561455987145]
We propose a unified healthcare prediction model, also named by textbfFlexCare, to flexibly accommodate incomplete multimodal inputs.
A task-agnostic multimodal information extraction module is presented to capture decorrelated representations of diverse intra- and inter-modality patterns.
Experimental results on multiple tasks from MIMIC-IV/MIMIC-CXR/MIMIC-NOTE datasets demonstrate the effectiveness of the proposed method.
arXiv Detail & Related papers (2024-06-17T12:03:10Z) - Medical Vision-Language Pre-Training for Brain Abnormalities [96.1408455065347]
We show how to automatically collect medical image-text aligned data for pretraining from public resources such as PubMed.
In particular, we present a pipeline that streamlines the pre-training process by initially collecting a large brain image-text dataset.
We also investigate the unique challenge of mapping subfigures to subcaptions in the medical domain.
arXiv Detail & Related papers (2024-04-27T05:03:42Z) - MedEval: A Multi-Level, Multi-Task, and Multi-Domain Medical Benchmark
for Language Model Evaluation [22.986061896641083]
MedEval is a multi-level, multi-task, and multi-domain medical benchmark to facilitate the development of language models for healthcare.
With 22,779 collected sentences and 21,228 reports, we provide expert annotations at multiple levels, offering a granular potential usage of the data.
arXiv Detail & Related papers (2023-10-21T18:59:41Z) - Specialty-Oriented Generalist Medical AI for Chest CT Screening [14.31187762890342]
We propose the first-of-its-kind medical multimodal-multitask foundation model (M3FM) with application in lung cancer screening and related tasks.
M3FM consistently outperforms the state-of-the-art single-modal task-specific models.
As a specialty-oriented generalist medical AI model, M3FM paves the way for similar breakthroughs in other areas of medicine.
arXiv Detail & Related papers (2023-04-03T20:19:56Z) - MMLN: Leveraging Domain Knowledge for Multimodal Diagnosis [10.133715767542386]
We propose a knowledge-driven and data-driven framework for lung disease diagnosis.
We formulate diagnosis rules according to authoritative clinical medicine guidelines and learn the weights of rules from text data.
A multimodal fusion consisting of text and image data is designed to infer the marginal probability of lung disease.
arXiv Detail & Related papers (2022-02-09T04:12:30Z) - Cross-Modal Information Maximization for Medical Imaging: CMIM [62.28852442561818]
In hospitals, data are siloed to specific information systems that make the same information available under different modalities.
This offers unique opportunities to obtain and use at train-time those multiple views of the same information that might not always be available at test-time.
We propose an innovative framework that makes the most of available data by learning good representations of a multi-modal input that are resilient to modality dropping at test-time.
arXiv Detail & Related papers (2020-10-20T20:05:35Z) - Select-ProtoNet: Learning to Select for Few-Shot Disease Subtype
Prediction [55.94378672172967]
We focus on few-shot disease subtype prediction problem, identifying subgroups of similar patients.
We introduce meta learning techniques to develop a new model, which can extract the common experience or knowledge from interrelated clinical tasks.
Our new model is built upon a carefully designed meta-learner, called Prototypical Network, that is a simple yet effective meta learning machine for few-shot image classification.
arXiv Detail & Related papers (2020-09-02T02:50:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.