MedViLaM: A multimodal large language model with advanced generalizability and explainability for medical data understanding and generation
- URL: http://arxiv.org/abs/2409.19684v1
- Date: Sun, 29 Sep 2024 12:23:10 GMT
- Title: MedViLaM: A multimodal large language model with advanced generalizability and explainability for medical data understanding and generation
- Authors: Lijian Xu, Hao Sun, Ziyu Ni, Hongsheng Li, Shaoting Zhang,
- Abstract summary: We introduce MedViLaM, a unified vision-language model towards a generalist model for medical data.
MedViLaM can flexibly encode and interpret various forms of medical data, including clinical language and imaging.
We present instances of zero-shot generalization to new medical concepts and tasks, effective transfer learning across different tasks, and the emergence of zero-shot medical reasoning.
- Score: 40.9095393430871
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Medicine is inherently multimodal and multitask, with diverse data modalities spanning text, imaging. However, most models in medical field are unimodal single tasks and lack good generalizability and explainability. In this study, we introduce MedViLaM, a unified vision-language model towards a generalist model for medical data that can flexibly encode and interpret various forms of medical data, including clinical language and imaging, all using the same set of model weights. To facilitate the creation of such multi-task model, we have curated MultiMedBench, a comprehensive pretaining dataset and benchmark consisting of several distinct tasks, i.e., continuous question-answering, multi-label disease classification, disease localization, generation and summarization of radiology reports. MedViLaM demonstrates strong performance across all MultiMedBench tasks, frequently outpacing other generalist models by a significant margin. Additionally, we present instances of zero-shot generalization to new medical concepts and tasks, effective transfer learning across different tasks, and the emergence of zero-shot medical reasoning.
Related papers
- MultiMed: Massively Multimodal and Multitask Medical Understanding [41.160488390597905]
MultiMed is a benchmark designed to evaluate and enable large-scale learning across a wide spectrum of medical modalities and tasks.
It consists of 2.56 million samples across ten medical modalities such as medical reports, pathology, genomics, and protein data.
Using MultiMed, we conduct comprehensive experiments benchmarking state-of-the-art unimodal, multimodal, and multitask models.
arXiv Detail & Related papers (2024-08-22T18:41:36Z) - Towards Holistic Disease Risk Prediction using Small Language Models [2.137491464843808]
We introduce a framework that connects small language models to multiple data sources, aiming to predict the risk of various diseases simultaneously.
Our experiments encompass 12 different tasks within a multitask learning setup.
arXiv Detail & Related papers (2024-08-13T15:01:33Z) - MedTrinity-25M: A Large-scale Multimodal Dataset with Multigranular Annotations for Medicine [53.01393667775077]
This paper introduces MedTrinity-25M, a comprehensive, large-scale multimodal dataset for medicine.
It covers over 25 million images across 10 modalities, with multigranular annotations for more than 65 diseases.
Unlike existing approach which is limited by the availability of image-text pairs, we have developed the first automated pipeline.
arXiv Detail & Related papers (2024-08-06T02:09:35Z) - FlexCare: Leveraging Cross-Task Synergy for Flexible Multimodal Healthcare Prediction [34.732561455987145]
We propose a unified healthcare prediction model, also named by textbfFlexCare, to flexibly accommodate incomplete multimodal inputs.
A task-agnostic multimodal information extraction module is presented to capture decorrelated representations of diverse intra- and inter-modality patterns.
Experimental results on multiple tasks from MIMIC-IV/MIMIC-CXR/MIMIC-NOTE datasets demonstrate the effectiveness of the proposed method.
arXiv Detail & Related papers (2024-06-17T12:03:10Z) - Medical Vision-Language Pre-Training for Brain Abnormalities [96.1408455065347]
We show how to automatically collect medical image-text aligned data for pretraining from public resources such as PubMed.
In particular, we present a pipeline that streamlines the pre-training process by initially collecting a large brain image-text dataset.
We also investigate the unique challenge of mapping subfigures to subcaptions in the medical domain.
arXiv Detail & Related papers (2024-04-27T05:03:42Z) - C^2M-DoT: Cross-modal consistent multi-view medical report generation
with domain transfer network [67.97926983664676]
We propose a cross-modal consistent multi-view medical report generation with a domain transfer network (C2M-DoT)
C2M-DoT substantially outperforms state-of-the-art baselines in all metrics.
arXiv Detail & Related papers (2023-10-09T02:31:36Z) - Towards Generalist Biomedical AI [28.68106423175678]
We introduce Med-PaLM Multimodal (Med-PaLM M), our proof of concept for a generalist biomedical AI system.
Med-PaLM M is a large multimodal generative model that flexibly encodes and interprets biomedical data.
We conduct a radiologist evaluation of model-generated (and human) chest X-ray reports and observe encouraging performance across model scales.
arXiv Detail & Related papers (2023-07-26T17:52:22Z) - Towards Medical Artificial General Intelligence via Knowledge-Enhanced
Multimodal Pretraining [121.89793208683625]
Medical artificial general intelligence (MAGI) enables one foundation model to solve different medical tasks.
We propose a new paradigm called Medical-knedge-enhanced mulTimOdal pretRaining (MOTOR)
arXiv Detail & Related papers (2023-04-26T01:26:19Z) - Specialty-Oriented Generalist Medical AI for Chest CT Screening [14.31187762890342]
We propose the first-of-its-kind medical multimodal-multitask foundation model (M3FM) with application in lung cancer screening and related tasks.
M3FM consistently outperforms the state-of-the-art single-modal task-specific models.
As a specialty-oriented generalist medical AI model, M3FM paves the way for similar breakthroughs in other areas of medicine.
arXiv Detail & Related papers (2023-04-03T20:19:56Z) - Cross-Modal Information Maximization for Medical Imaging: CMIM [62.28852442561818]
In hospitals, data are siloed to specific information systems that make the same information available under different modalities.
This offers unique opportunities to obtain and use at train-time those multiple views of the same information that might not always be available at test-time.
We propose an innovative framework that makes the most of available data by learning good representations of a multi-modal input that are resilient to modality dropping at test-time.
arXiv Detail & Related papers (2020-10-20T20:05:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.