論文の概要: Defining and Measuring Disentanglement for non-Independent Factors of Variation
- arxiv url: http://arxiv.org/abs/2408.07016v1
- Date: Tue, 13 Aug 2024 16:30:36 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-14 16:55:31.493322
- Title: Defining and Measuring Disentanglement for non-Independent Factors of Variation
- Title(参考訳): 変分非独立因子の歪みの定義と測定
- Authors: Antonio Almudévar, Alfonso Ortega, Luis Vicente, Antonio Miguel, Eduardo Lleida,
- Abstract要約: 変動要因が独立していない場合に有効である情報理論に基づく絡み合いの定義を与える。
変動要因が独立でない場合に作用する所定の定義から乱れ度を測定する手法を提案する。
- 参考スコア(独自算出の注目度): 9.452311793803803
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Representation learning is an approach that allows to discover and extract the factors of variation from the data. Intuitively, a representation is said to be disentangled if it separates the different factors of variation in a way that is understandable to humans. Definitions of disentanglement and metrics to measure it usually assume that the factors of variation are independent of each other. However, this is generally false in the real world, which limits the use of these definitions and metrics to very specific and unrealistic scenarios. In this paper we give a definition of disentanglement based on information theory that is also valid when the factors of variation are not independent. Furthermore, we relate this definition to the Information Bottleneck Method. Finally, we propose a method to measure the degree of disentanglement from the given definition that works when the factors of variation are not independent. We show through different experiments that the method proposed in this paper correctly measures disentanglement with non-independent factors of variation, while other methods fail in this scenario.
- Abstract(参考訳): 表現学習(representation learning)は、データから変化の要因を発見し、抽出する手法である。
直感的には、表現が人間にとって理解可能な方法で変化の異なる要因を分離するならば、切り離されると言われる。
遠絡と測度の定義は、通常、変動の要因が互いに独立していると仮定する。
しかし、これは現実の世界では一般的に誤りであり、これらの定義とメトリクスの使用を非常に具体的で非現実的なシナリオに制限する。
本稿では,変化の要因が独立していない場合にも有効である情報理論に基づく絡み合いの定義を提案する。
さらに、この定義をInformation Bottleneck Methodに関連付ける。
最後に、変動要因が独立でない場合に作用する所定の定義から乱れ度を測定する方法を提案する。
本稿では,本手法が非独立要因のばらつきを正確に測定するのに対して,他の手法では失敗することを示す。
関連論文リスト
- Disentanglement in Difference: Directly Learning Semantically Disentangled Representations by Maximizing Inter-Factor Differences [6.957804123702956]
差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差
dSpritesと3DShapesデータセットの実験結果は、提案したDiDが既存の主流メソッドよりも優れていることを示している。
論文 参考訳(メタデータ) (2025-02-05T12:30:41Z) - Nonparametric Partial Disentanglement via Mechanism Sparsity: Sparse
Actions, Interventions and Sparse Temporal Dependencies [58.179981892921056]
この研究は、メカニズムのスパーシティ正則化(英語版)と呼ばれる、アンタングルメントの新たな原理を導入する。
本稿では,潜在要因を同時に学習することで,絡み合いを誘発する表現学習手法を提案する。
学習した因果グラフをスパースに規則化することにより、潜伏因子を復元できることを示す。
論文 参考訳(メタデータ) (2024-01-10T02:38:21Z) - C-Disentanglement: Discovering Causally-Independent Generative Factors
under an Inductive Bias of Confounder [35.09708249850816]
我々は,共同設立者の帰納的バイアスを明示する最初のフレームワークである,C-Disentanglement(C-Disentanglement)というフレームワークを紹介した。
我々は、合成データセットと実世界のデータセットの両方について広範な実験を行う。
論文 参考訳(メタデータ) (2023-10-26T11:44:42Z) - Results on Counterfactual Invariance [3.616948583169635]
反事実的不変性は条件的独立を意味するが、条件的独立性は反事実的不変性を満たす度合いや可能性について何の意味も示さない。
離散因果モデルでは、反実不変函数は、しばしば特定の変数の函数、あるいは定数であるように制約される。
論文 参考訳(メタデータ) (2023-07-17T14:27:32Z) - Disentanglement of Latent Representations via Causal Interventions [11.238098505498165]
因果力学に着想を得た新しい解離法を提案する。
我々のモデルは、量子化されたベクトルを因果変数とみなし、因果グラフでそれらをリンクする。
グラフの因果的介入を行い、画像の変動のユニークな要因に影響を与える原子遷移を生成する。
論文 参考訳(メタデータ) (2023-02-02T04:37:29Z) - Disentanglement of Correlated Factors via Hausdorff Factorized Support [53.23740352226391]
本稿では,因子分布ではなく,因子化支援を助長する緩やかな解離基準,HFS(Hausdorff Factorized Support)基準を提案する。
本研究では,HFSを用いることにより,様々な相関設定やベンチマークにおいて,接地構造因子の絡み合いと回復が一貫して促進されることを示す。
論文 参考訳(メタデータ) (2022-10-13T20:46:42Z) - Learning Conditional Invariance through Cycle Consistency [60.85059977904014]
本稿では,データセットの変動の有意義な要因と独立な要因を識別する新しい手法を提案する。
提案手法は,対象プロパティと残りの入力情報に対する2つの別個の潜在部分空間を含む。
我々は,より意味のある因子を同定し,よりスペーサーや解釈可能なモデルに導く合成および分子データについて実証する。
論文 参考訳(メタデータ) (2021-11-25T17:33:12Z) - Disentanglement Analysis with Partial Information Decomposition [31.56299813238937]
不整合表現は、異なる生成因子を個別にキャプチャする複数のランダム変数にデータをマッピングすることで、プロセスを逆転させることを目的としている。
現在の遠絡測定値は、各生成因子によって条件付けられた各変数の絶対偏差、分散、エントロピーなどの濃度を測定するように設計されている。
本研究では,2つ以上の変数間の情報共有を評価するために部分情報分解フレームワークを使用し,新しいアンタングル化指標を含むフレームワークを構築する。
論文 参考訳(メタデータ) (2021-08-31T11:09:40Z) - Counterfactual Invariance to Spurious Correlations: Why and How to Pass
Stress Tests [87.60900567941428]
素早い相関」とは、アナリストが重要とすべきでないと考える入力データのある側面に対するモデルの依存である。
機械学習では、これらにはノウ・イ・ウ・ウ・ウ・ウ・ウ・ウ・ウ・ウ・ウ・ウ・ウ・ウ・ウ・ウ・ウ・ウ・ウ・ウ・ウ・ウ・ウ・ウ・ウ・ウ・ウ・ウ・ウ・ウ・ウ・ウ」という特徴がある。
因果推論ツールを用いたストレステストについて検討した。
論文 参考訳(メタデータ) (2021-05-31T14:39:38Z) - Learning Disentangled Representations with Latent Variation
Predictability [102.4163768995288]
本稿では,潜在不整合表現の変動予測可能性について述べる。
逆生成プロセス内では、潜時変動と対応する画像対の相互情報を最大化することにより、変動予測可能性を高める。
本研究では,潜在表現の絡み合いを測るために,基礎的構造的生成因子に依存しない評価指標を開発する。
論文 参考訳(メタデータ) (2020-07-25T08:54:26Z) - Learning to Manipulate Individual Objects in an Image [71.55005356240761]
本稿では,独立性および局所性を有する潜在因子を用いた生成モデルを学習する手法について述べる。
これは、潜伏変数の摂動が、オブジェクトに対応する合成画像の局所領域のみに影響を与えることを意味する。
他の教師なし生成モデルとは異なり、オブジェクトレベルのアノテーションを必要とせず、オブジェクト中心の操作を可能にする。
論文 参考訳(メタデータ) (2020-04-11T21:50:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。