KAN You See It? KANs and Sentinel for Effective and Explainable Crop Field Segmentation
- URL: http://arxiv.org/abs/2408.07040v1
- Date: Tue, 13 Aug 2024 17:07:29 GMT
- Title: KAN You See It? KANs and Sentinel for Effective and Explainable Crop Field Segmentation
- Authors: Daniele Rege Cambrin, Eleonora Poeta, Eliana Pastor, Tania Cerquitelli, Elena Baralis, Paolo Garza,
- Abstract summary: This paper analyzes the integration of KAN layers into the U-Net architecture (U-KAN) to segment crop fields using Sentinel-2 and Sentinel-1 satellite images.
Our findings indicate a 2% improvement in IoU compared to the traditional full-convolutional U-Net model in fewer GFLOPs.
- Score: 16.358846714992893
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Segmentation of crop fields is essential for enhancing agricultural productivity, monitoring crop health, and promoting sustainable practices. Deep learning models adopted for this task must ensure accurate and reliable predictions to avoid economic losses and environmental impact. The newly proposed Kolmogorov-Arnold networks (KANs) offer promising advancements in the performance of neural networks. This paper analyzes the integration of KAN layers into the U-Net architecture (U-KAN) to segment crop fields using Sentinel-2 and Sentinel-1 satellite images and provides an analysis of the performance and explainability of these networks. Our findings indicate a 2\% improvement in IoU compared to the traditional full-convolutional U-Net model in fewer GFLOPs. Furthermore, gradient-based explanation techniques show that U-KAN predictions are highly plausible and that the network has a very high ability to focus on the boundaries of cultivated areas rather than on the areas themselves. The per-channel relevance analysis also reveals that some channels are irrelevant to this task.
Related papers
- Can KAN Work? Exploring the Potential of Kolmogorov-Arnold Networks in Computer Vision [6.554163686640315]
This study first analyzes the potential of KAN in computer vision tasks, evaluating the performance of KAN and its convolutional variants in image classification and semantic segmentation.
Results indicate that while KAN exhibits stronger fitting capabilities, it is highly sensitive to noise, limiting its robustness.
To address this challenge, we propose a regularization method and introduce a Segment Deactivation technique.
arXiv Detail & Related papers (2024-11-11T05:44:48Z) - Kolmogorov-Arnold Network Autoencoders [0.0]
Kolmogorov-Arnold Networks (KANs) are promising alternatives to Multi-Layer Perceptrons (MLPs)
KANs align closely with the Kolmogorov-Arnold representation theorem, potentially enhancing both model accuracy and interpretability.
Our results demonstrate that KAN-based autoencoders achieve competitive performance in terms of reconstruction accuracy.
arXiv Detail & Related papers (2024-10-02T22:56:00Z) - KANDU-Net:A Dual-Channel U-Net with KAN for Medical Image Segmentation [0.0]
We present a novel architecture that integrates KAN networks with U-Net.
We introduce a KAN-convolution dual-channel structure that enables the model to more effectively capture both local and global features.
Experiments conducted across multiple datasets show that our model performs well in terms of accuracy.
arXiv Detail & Related papers (2024-09-30T15:41:51Z) - Kolmogorov-Arnold Graph Neural Networks [2.4005219869876453]
Graph neural networks (GNNs) excel in learning from network-like data but often lack interpretability.
We propose the Graph Kolmogorov-Arnold Network (GKAN) to enhance both accuracy and interpretability.
arXiv Detail & Related papers (2024-06-26T13:54:59Z) - U-KAN Makes Strong Backbone for Medical Image Segmentation and Generation [48.40120035775506]
Kolmogorov-Arnold Networks (KANs) reshape the neural network learning via the stack of non-linear learnable activation functions.
We investigate, modify and re-design the established U-Net pipeline by integrating the dedicated KAN layers on the tokenized intermediate representation, termed U-KAN.
We further delved into the potential of U-KAN as an alternative U-Net noise predictor in diffusion models, demonstrating its applicability in generating task-oriented model architectures.
arXiv Detail & Related papers (2024-06-05T04:13:03Z) - CSA-Net: Channel-wise Spatially Autocorrelated Attention Networks [19.468704622654357]
We present a channel-wise spatially autocorrelated (CSA) attention mechanism for deep CNNs.
Inspired by geographical analysis, the proposed CSA exploits the spatial relationships between channels of feature maps to produce an effective channel descriptor.
We validate the effectiveness of the proposed CSA networks through extensive experiments and analysis on ImageNet, and MS COCO benchmark datasets.
arXiv Detail & Related papers (2024-05-09T13:21:03Z) - ARHNet: Adaptive Region Harmonization for Lesion-aware Augmentation to
Improve Segmentation Performance [61.04246102067351]
We propose a foreground harmonization framework (ARHNet) to tackle intensity disparities and make synthetic images look more realistic.
We demonstrate the efficacy of our method in improving the segmentation performance using real and synthetic images.
arXiv Detail & Related papers (2023-07-02T10:39:29Z) - Influencer Detection with Dynamic Graph Neural Networks [56.1837101824783]
We investigate different dynamic Graph Neural Networks (GNNs) configurations for influencer detection.
We show that using deep multi-head attention in GNN and encoding temporal attributes significantly improves performance.
arXiv Detail & Related papers (2022-11-15T13:00:25Z) - Interpolation-based Correlation Reduction Network for Semi-Supervised
Graph Learning [49.94816548023729]
We propose a novel graph contrastive learning method, termed Interpolation-based Correlation Reduction Network (ICRN)
In our method, we improve the discriminative capability of the latent feature by enlarging the margin of decision boundaries.
By combining the two settings, we extract rich supervision information from both the abundant unlabeled nodes and the rare yet valuable labeled nodes for discnative representation learning.
arXiv Detail & Related papers (2022-06-06T14:26:34Z) - SAR Despeckling Using Overcomplete Convolutional Networks [53.99620005035804]
despeckling is an important problem in remote sensing as speckle degrades SAR images.
Recent studies show that convolutional neural networks(CNNs) outperform classical despeckling methods.
This study employs an overcomplete CNN architecture to focus on learning low-level features by restricting the receptive field.
We show that the proposed network improves despeckling performance compared to recent despeckling methods on synthetic and real SAR images.
arXiv Detail & Related papers (2022-05-31T15:55:37Z) - An Uncertainty-Driven GCN Refinement Strategy for Organ Segmentation [53.425900196763756]
We propose a segmentation refinement method based on uncertainty analysis and graph convolutional networks.
We employ the uncertainty levels of the convolutional network in a particular input volume to formulate a semi-supervised graph learning problem.
We show that our method outperforms the state-of-the-art CRF refinement method by improving the dice score by 1% for the pancreas and 2% for spleen.
arXiv Detail & Related papers (2020-12-06T18:55:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.