ARHNet: Adaptive Region Harmonization for Lesion-aware Augmentation to
Improve Segmentation Performance
- URL: http://arxiv.org/abs/2307.01220v1
- Date: Sun, 2 Jul 2023 10:39:29 GMT
- Title: ARHNet: Adaptive Region Harmonization for Lesion-aware Augmentation to
Improve Segmentation Performance
- Authors: Jiayu Huo, Yang Liu, Xi Ouyang, Alejandro Granados, Sebastien
Ourselin, Rachel Sparks
- Abstract summary: We propose a foreground harmonization framework (ARHNet) to tackle intensity disparities and make synthetic images look more realistic.
We demonstrate the efficacy of our method in improving the segmentation performance using real and synthetic images.
- Score: 61.04246102067351
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Accurately segmenting brain lesions in MRI scans is critical for providing
patients with prognoses and neurological monitoring. However, the performance
of CNN-based segmentation methods is constrained by the limited training set
size. Advanced data augmentation is an effective strategy to improve the
model's robustness. However, they often introduce intensity disparities between
foreground and background areas and boundary artifacts, which weakens the
effectiveness of such strategies. In this paper, we propose a foreground
harmonization framework (ARHNet) to tackle intensity disparities and make
synthetic images look more realistic. In particular, we propose an Adaptive
Region Harmonization (ARH) module to dynamically align foreground feature maps
to the background with an attention mechanism. We demonstrate the efficacy of
our method in improving the segmentation performance using real and synthetic
images. Experimental results on the ATLAS 2.0 dataset show that ARHNet
outperforms other methods for image harmonization tasks, and boosts the
down-stream segmentation performance. Our code is publicly available at
https://github.com/King-HAW/ARHNet.
Related papers
- DynaSeg: A Deep Dynamic Fusion Method for Unsupervised Image Segmentation Incorporating Feature Similarity and Spatial Continuity [0.5755004576310334]
We introduce DynaSeg, an innovative unsupervised image segmentation approach.
Unlike traditional methods, DynaSeg employs a dynamic weighting scheme that adapts flexibly to image characteristics.
DynaSeg prevents undersegmentation failures where the number of predicted clusters might converge to one.
arXiv Detail & Related papers (2024-05-09T00:30:45Z) - Adaptive Affinity-Based Generalization For MRI Imaging Segmentation Across Resource-Limited Settings [1.5703963908242198]
This paper introduces a novel relation-based knowledge framework by seamlessly combining adaptive affinity-based and kernel-based distillation.
To validate our innovative approach, we conducted experiments on publicly available multi-source prostate MRI data.
arXiv Detail & Related papers (2024-04-03T13:35:51Z) - Hybrid Convolutional and Attention Network for Hyperspectral Image Denoising [54.110544509099526]
Hyperspectral image (HSI) denoising is critical for the effective analysis and interpretation of hyperspectral data.
We propose a hybrid convolution and attention network (HCANet) to enhance HSI denoising.
Experimental results on mainstream HSI datasets demonstrate the rationality and effectiveness of the proposed HCANet.
arXiv Detail & Related papers (2024-03-15T07:18:43Z) - DGNet: Dynamic Gradient-Guided Network for Water-Related Optics Image
Enhancement [77.0360085530701]
Underwater image enhancement (UIE) is a challenging task due to the complex degradation caused by underwater environments.
Previous methods often idealize the degradation process, and neglect the impact of medium noise and object motion on the distribution of image features.
Our approach utilizes predicted images to dynamically update pseudo-labels, adding a dynamic gradient to optimize the network's gradient space.
arXiv Detail & Related papers (2023-12-12T06:07:21Z) - Distributed Neural Representation for Reactive in situ Visualization [23.80657290203846]
Implicit neural representations (INRs) have emerged as a powerful tool for compressing large-scale volume data.
We develop a distributed neural representation and optimize it for in situ visualization.
Our technique eliminates data exchanges between processes, achieving state-of-the-art compression speed, quality and ratios.
arXiv Detail & Related papers (2023-03-28T03:55:47Z) - IDA: Informed Domain Adaptive Semantic Segmentation [51.12107564372869]
We propose an Domain Informed Adaptation (IDA) model, a self-training framework that mixes the data based on class-level segmentation performance.
In our IDA model, the class-level performance is tracked by an expected confidence score (ECS) and we then use a dynamic schedule to determine the mixing ratio for data in different domains.
Our proposed method is able to outperform the state-of-the-art UDA-SS method by a margin of 1.1 mIoU in the adaptation of GTA-V to Cityscapes and of 0.9 mIoU in the adaptation of SYNTHIA to City
arXiv Detail & Related papers (2023-03-05T18:16:34Z) - Adversarial Feature Augmentation and Normalization for Visual
Recognition [109.6834687220478]
Recent advances in computer vision take advantage of adversarial data augmentation to ameliorate the generalization ability of classification models.
Here, we present an effective and efficient alternative that advocates adversarial augmentation on intermediate feature embeddings.
We validate the proposed approach across diverse visual recognition tasks with representative backbone networks.
arXiv Detail & Related papers (2021-03-22T20:36:34Z) - Boosting Segmentation Performance across datasets using histogram
specification with application to pelvic bone segmentation [1.3750624267664155]
We propose a methodology based on modulation of image tonal distributions and deep learning to boost the performance of networks trained on limited data.
The segmentation task uses a U-Net configuration with an EfficientNet-B0 backbone, optimized using an augmented BCE-IoU loss function.
arXiv Detail & Related papers (2021-01-26T23:48:40Z) - Unsupervised Bidirectional Cross-Modality Adaptation via Deeply
Synergistic Image and Feature Alignment for Medical Image Segmentation [73.84166499988443]
We present a novel unsupervised domain adaptation framework, named as Synergistic Image and Feature Alignment (SIFA)
Our proposed SIFA conducts synergistic alignment of domains from both image and feature perspectives.
Experimental results on two different tasks demonstrate that our SIFA method is effective in improving segmentation performance on unlabeled target images.
arXiv Detail & Related papers (2020-02-06T13:49:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.