DisCoM-KD: Cross-Modal Knowledge Distillation via Disentanglement Representation and Adversarial Learning
- URL: http://arxiv.org/abs/2408.07080v1
- Date: Mon, 5 Aug 2024 13:44:15 GMT
- Title: DisCoM-KD: Cross-Modal Knowledge Distillation via Disentanglement Representation and Adversarial Learning
- Authors: Dino Ienco, Cassio Fraga Dantas,
- Abstract summary: Cross-modal knowledge distillation (CMKD) refers to the scenario in which a learning framework must handle training and test data that exhibit a modality mismatch.
DisCoM-KD (Disentanglement-learning based Cross-Modal Knowledge Distillation) explicitly models different types of per-modality information.
- Score: 3.763772992906958
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Cross-modal knowledge distillation (CMKD) refers to the scenario in which a learning framework must handle training and test data that exhibit a modality mismatch, more precisely, training and test data do not cover the same set of data modalities. Traditional approaches for CMKD are based on a teacher/student paradigm where a teacher is trained on multi-modal data with the aim to successively distill knowledge from a multi-modal teacher to a single-modal student. Despite the widespread adoption of such paradigm, recent research has highlighted its inherent limitations in the context of cross-modal knowledge transfer.Taking a step beyond the teacher/student paradigm, here we introduce a new framework for cross-modal knowledge distillation, named DisCoM-KD (Disentanglement-learning based Cross-Modal Knowledge Distillation), that explicitly models different types of per-modality information with the aim to transfer knowledge from multi-modal data to a single-modal classifier. To this end, DisCoM-KD effectively combines disentanglement representation learning with adversarial domain adaptation to simultaneously extract, foreach modality, domain-invariant, domain-informative and domain-irrelevant features according to a specific downstream task. Unlike the traditional teacher/student paradigm, our framework simultaneously learns all single-modal classifiers, eliminating the need to learn each student model separately as well as the teacher classifier. We evaluated DisCoM-KD on three standard multi-modal benchmarks and compared its behaviourwith recent SOTA knowledge distillation frameworks. The findings clearly demonstrate the effectiveness of DisCoM-KD over competitors considering mismatch scenarios involving both overlapping and non-overlapping modalities. These results offer insights to reconsider the traditional paradigm for distilling information from multi-modal data to single-modal neural networks.
Related papers
- Multi-Stage Knowledge Integration of Vision-Language Models for Continual Learning [79.46570165281084]
We propose a Multi-Stage Knowledge Integration network (MulKI) to emulate the human learning process in distillation methods.
MulKI achieves this through four stages, including Eliciting Ideas, Adding New Ideas, Distinguishing Ideas, and Making Connections.
Our method demonstrates significant improvements in maintaining zero-shot capabilities while supporting continual learning across diverse downstream tasks.
arXiv Detail & Related papers (2024-11-11T07:36:19Z) - Cross-Modal Few-Shot Learning: a Generative Transfer Learning Framework [58.362064122489166]
This paper introduces the Cross-modal Few-Shot Learning task, which aims to recognize instances from multiple modalities when only a few labeled examples are available.
We propose a Generative Transfer Learning framework consisting of two stages: the first involves training on abundant unimodal data, and the second focuses on transfer learning to adapt to novel data.
Our finds demonstrate that GTL has superior performance compared to state-of-the-art methods across four distinct multi-modal datasets.
arXiv Detail & Related papers (2024-10-14T16:09:38Z) - Detached and Interactive Multimodal Learning [17.843121072628477]
This paper introduces DI-MML, a novel detached MML framework designed to learn complementary information across modalities.
It addresses competition by separately training each modality encoder with isolated learning objectives.
Experiments conducted on audio-visual, flow-image, and front-rear view datasets show the superior performance of our proposed method.
arXiv Detail & Related papers (2024-07-28T15:38:58Z) - Distilling Privileged Multimodal Information for Expression Recognition using Optimal Transport [46.91791643660991]
Deep learning models for multimodal expression recognition have reached remarkable performance in controlled laboratory environments.
These models struggle in the wild because of the unavailability and quality of modalities used for training.
In practice, only a subset of the training-time modalities may be available at test time.
Learning with privileged information enables models to exploit data from additional modalities that are only available during training.
arXiv Detail & Related papers (2024-01-27T19:44:15Z) - Multimodal Representation Learning by Alternating Unimodal Adaptation [73.15829571740866]
We propose MLA (Multimodal Learning with Alternating Unimodal Adaptation) to overcome challenges where some modalities appear more dominant than others during multimodal learning.
MLA reframes the conventional joint multimodal learning process by transforming it into an alternating unimodal learning process.
It captures cross-modal interactions through a shared head, which undergoes continuous optimization across different modalities.
Experiments are conducted on five diverse datasets, encompassing scenarios with complete modalities and scenarios with missing modalities.
arXiv Detail & Related papers (2023-11-17T18:57:40Z) - I$^2$MD: 3D Action Representation Learning with Inter- and Intra-modal
Mutual Distillation [147.2183428328396]
We introduce a general Inter- and Intra-modal Mutual Distillation (I$2$MD) framework.
In I$2$MD, we first re-formulate the cross-modal interaction as a Cross-modal Mutual Distillation (CMD) process.
To alleviate the interference of similar samples and exploit their underlying contexts, we further design the Intra-modal Mutual Distillation (IMD) strategy.
arXiv Detail & Related papers (2023-10-24T07:22:17Z) - CMD: Self-supervised 3D Action Representation Learning with Cross-modal
Mutual Distillation [130.08432609780374]
In 3D action recognition, there exists rich complementary information between skeleton modalities.
We propose a new Cross-modal Mutual Distillation (CMD) framework with the following designs.
Our approach outperforms existing self-supervised methods and sets a series of new records.
arXiv Detail & Related papers (2022-08-26T06:06:09Z) - Modality-specific Distillation [30.190082262375395]
We propose modality-specific distillation (MSD) to effectively transfer knowledge from a teacher on multimodal datasets.
Our idea aims at mimicking a teacher's modality-specific predictions by introducing an auxiliary loss term for each modality.
Because each modality has different importance for predictions, we also propose weighting approaches for the auxiliary losses.
arXiv Detail & Related papers (2021-01-06T05:45:07Z) - Knowledge Distillation Beyond Model Compression [13.041607703862724]
Knowledge distillation (KD) is commonly deemed as an effective model compression technique in which a compact model (student) is trained under the supervision of a larger pretrained model or ensemble of models (teacher)
In this study, we provide an extensive study on nine different KD methods which covers a broad spectrum of approaches to capture and transfer knowledge.
arXiv Detail & Related papers (2020-07-03T19:54:04Z) - Unpaired Multi-modal Segmentation via Knowledge Distillation [77.39798870702174]
We propose a novel learning scheme for unpaired cross-modality image segmentation.
In our method, we heavily reuse network parameters, by sharing all convolutional kernels across CT and MRI.
We have extensively validated our approach on two multi-class segmentation problems.
arXiv Detail & Related papers (2020-01-06T20:03:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.