Masked EEG Modeling for Driving Intention Prediction
- URL: http://arxiv.org/abs/2408.07083v1
- Date: Thu, 8 Aug 2024 03:49:05 GMT
- Title: Masked EEG Modeling for Driving Intention Prediction
- Authors: Jinzhao Zhou, Justin Sia, Yiqun Duan, Yu-Cheng Chang, Yu-Kai Wang, Chin-Teng Lin,
- Abstract summary: This paper pioneers a novel research direction in BCI-assisted driving, studying the neural patterns related to driving intentions.
We propose a novel Masked EEG Modeling framework for predicting human driving intentions, including the intention for left turning, right turning, and straight proceeding.
Our model attains an accuracy of 85.19% when predicting driving intentions for drowsy subjects, which shows its promising potential for mitigating traffic accidents related to drowsy driving.
- Score: 27.606175591082756
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Driving under drowsy conditions significantly escalates the risk of vehicular accidents. Although recent efforts have focused on using electroencephalography to detect drowsiness, helping prevent accidents caused by driving in such states, seamless human-machine interaction in driving scenarios requires a more versatile EEG-based system. This system should be capable of understanding a driver's intention while demonstrating resilience to artifacts induced by sudden movements. This paper pioneers a novel research direction in BCI-assisted driving, studying the neural patterns related to driving intentions and presenting a novel method for driving intention prediction. In particular, our preliminary analysis of the EEG signal using independent component analysis suggests a close relation between the intention of driving maneuvers and the neural activities in central-frontal and parietal areas. Power spectral density analysis at a group level also reveals a notable distinction among various driving intentions in the frequency domain. To exploit these brain dynamics, we propose a novel Masked EEG Modeling framework for predicting human driving intentions, including the intention for left turning, right turning, and straight proceeding. Extensive experiments, encompassing comprehensive quantitative and qualitative assessments on public dataset, demonstrate the proposed method is proficient in predicting driving intentions across various vigilance states. Specifically, our model attains an accuracy of 85.19% when predicting driving intentions for drowsy subjects, which shows its promising potential for mitigating traffic accidents related to drowsy driving. Notably, our method maintains over 75% accuracy when more than half of the channels are missing or corrupted, underscoring its adaptability in real-life driving.
Related papers
- RACER: Rational Artificial Intelligence Car-following-model Enhanced by
Reality [51.244807332133696]
This paper introduces RACER, a cutting-edge deep learning car-following model to predict Adaptive Cruise Control (ACC) driving behavior.
Unlike conventional models, RACER effectively integrates Rational Driving Constraints (RDCs), crucial tenets of actual driving.
RACER excels across key metrics, such as acceleration, velocity, and spacing, registering zero violations.
arXiv Detail & Related papers (2023-12-12T06:21:30Z) - CPSOR-GCN: A Vehicle Trajectory Prediction Method Powered by Emotion and
Cognitive Theory [0.07499722271664144]
This paper proposes a new trajectory prediction model: CPSOR-GCN.
At the physical level, the interaction features between vehicles are extracted by the physical GCN module.
At the cognitive level, SOR cognitive theory is used as prior knowledge to build a Dynamic Bayesian Network (DBN) structure.
arXiv Detail & Related papers (2023-11-14T11:13:00Z) - Towards Safe Autonomy in Hybrid Traffic: Detecting Unpredictable
Abnormal Behaviors of Human Drivers via Information Sharing [21.979007506007733]
We show that our proposed algorithm has great detection performance in both highway and urban traffic.
The best performance achieves detection rate of 97.3%, average detection delay of 1.2s, and 0 false alarm.
arXiv Detail & Related papers (2023-08-23T18:24:28Z) - FBLNet: FeedBack Loop Network for Driver Attention Prediction [75.83518507463226]
Nonobjective driving experience is difficult to model.
In this paper, we propose a FeedBack Loop Network (FBLNet) which attempts to model the driving experience accumulation procedure.
Under the guidance of the incremental knowledge, our model fuses the CNN feature and Transformer feature that are extracted from the input image to predict driver attention.
arXiv Detail & Related papers (2022-12-05T08:25:09Z) - A Neural Active Inference Model of Perceptual-Motor Learning [62.39667564455059]
The active inference framework (AIF) is a promising new computational framework grounded in contemporary neuroscience.
In this study, we test the ability for the AIF to capture the role of anticipation in the visual guidance of action in humans.
We present a novel formulation of the prior function that maps a multi-dimensional world-state to a uni-dimensional distribution of free-energy.
arXiv Detail & Related papers (2022-11-16T20:00:38Z) - Driving Anomaly Detection Using Conditional Generative Adversarial
Network [26.45460503638333]
This study proposes an unsupervised method to quantify driving anomalies using a conditional generative adversarial network (GAN)
The approach predicts upcoming driving scenarios by conditioning the models on the previously observed signals.
The results are validated with perceptual evaluations, where annotators are asked to assess the risk and familiarity of the videos detected with high anomaly scores.
arXiv Detail & Related papers (2022-03-15T22:10:01Z) - Safety-aware Motion Prediction with Unseen Vehicles for Autonomous
Driving [104.32241082170044]
We study a new task, safety-aware motion prediction with unseen vehicles for autonomous driving.
Unlike the existing trajectory prediction task for seen vehicles, we aim at predicting an occupancy map.
Our approach is the first one that can predict the existence of unseen vehicles in most cases.
arXiv Detail & Related papers (2021-09-03T13:33:33Z) - DRIVE: Deep Reinforced Accident Anticipation with Visual Explanation [36.350348194248014]
Traffic accident anticipation aims to accurately and promptly predict the occurrence of a future accident from dashcam videos.
Existing approaches typically focus on capturing the cues of spatial and temporal context before a future accident occurs.
We propose Deep ReInforced accident anticipation with Visual Explanation, named DRIVE.
arXiv Detail & Related papers (2021-07-21T16:33:21Z) - Can Autonomous Vehicles Identify, Recover From, and Adapt to
Distribution Shifts? [104.04999499189402]
Out-of-training-distribution (OOD) scenarios are a common challenge of learning agents at deployment.
We propose an uncertainty-aware planning method, called emphrobust imitative planning (RIP)
Our method can detect and recover from some distribution shifts, reducing the overconfident and catastrophic extrapolations in OOD scenes.
We introduce an autonomous car novel-scene benchmark, textttCARNOVEL, to evaluate the robustness of driving agents to a suite of tasks with distribution shifts.
arXiv Detail & Related papers (2020-06-26T11:07:32Z) - Driver Intention Anticipation Based on In-Cabin and Driving Scene
Monitoring [52.557003792696484]
We present a framework for the detection of the drivers' intention based on both in-cabin and traffic scene videos.
Our framework achieves a prediction with the accuracy of 83.98% and F1-score of 84.3%.
arXiv Detail & Related papers (2020-06-20T11:56:32Z) - Deep Learning with Attention Mechanism for Predicting Driver Intention
at Intersection [2.1699196439348265]
The proposed solution is promising to be applied in advanced driver assistance systems (ADAS) and as part of active safety system of autonomous vehicles.
The performance of the proposed approach is evaluated on a naturalistic driving dataset and results show that our method achieves high accuracy as well as outperforms other methods.
arXiv Detail & Related papers (2020-06-10T16:12:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.