Deep Learning with Attention Mechanism for Predicting Driver Intention
at Intersection
- URL: http://arxiv.org/abs/2006.05918v1
- Date: Wed, 10 Jun 2020 16:12:00 GMT
- Title: Deep Learning with Attention Mechanism for Predicting Driver Intention
at Intersection
- Authors: Abenezer Girma, Seifemichael Amsalu, Abrham Workineh, Mubbashar Khan,
Abdollah Homaifar
- Abstract summary: The proposed solution is promising to be applied in advanced driver assistance systems (ADAS) and as part of active safety system of autonomous vehicles.
The performance of the proposed approach is evaluated on a naturalistic driving dataset and results show that our method achieves high accuracy as well as outperforms other methods.
- Score: 2.1699196439348265
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, a driver's intention prediction near a road intersection is
proposed. Our approach uses a deep bidirectional Long Short-Term Memory (LSTM)
with an attention mechanism model based on a hybrid-state system (HSS)
framework. As intersection is considered to be as one of the major source of
road accidents, predicting a driver's intention at an intersection is very
crucial. Our method uses a sequence to sequence modeling with an attention
mechanism to effectively exploit temporal information out of the time-series
vehicular data including velocity and yaw-rate. The model then predicts ahead
of time whether the target vehicle/driver will go straight, stop, or take right
or left turn. The performance of the proposed approach is evaluated on a
naturalistic driving dataset and results show that our method achieves high
accuracy as well as outperforms other methods. The proposed solution is
promising to be applied in advanced driver assistance systems (ADAS) and as
part of active safety system of autonomous vehicles.
Related papers
- Automatic driving lane change safety prediction model based on LSTM [3.8749946206111603]
The trajectory prediction method based on LSTM network has obvious advantages in predicting the trajectory in the long time domain.
The research results show that compared with the traditional model-based method, the trajectory prediction method based on LSTM network has obvious advantages in predicting the trajectory in the long time domain.
arXiv Detail & Related papers (2024-02-28T12:34:04Z) - Trajectory Prediction with Observations of Variable-Length for Motion
Planning in Highway Merging scenarios [5.193470362635256]
Existing methods cannot initiate prediction for a vehicle unless observed for a fixed duration of two or more seconds.
This paper proposes a novel transformer-based trajectory prediction approach, specifically trained to handle any observation length larger than one frame.
We perform a comprehensive evaluation of the proposed method using two large-scale highway trajectory datasets.
arXiv Detail & Related papers (2023-06-08T18:03:48Z) - Learning Pedestrian Actions to Ensure Safe Autonomous Driving [12.440017892152417]
It is critical for Autonomous Vehicles to have the ability to predict pedestrians' short-term and immediate actions in real-time.
In this work, a novel multi-task sequence to sequence Transformer encoders-decoders (TF-ed) architecture is proposed for pedestrian action and trajectory prediction.
The proposed approach is compared against an existing LSTM encoders decoders (LSTM-ed) architecture for action and trajectory prediction.
arXiv Detail & Related papers (2023-05-22T14:03:38Z) - FBLNet: FeedBack Loop Network for Driver Attention Prediction [75.83518507463226]
Nonobjective driving experience is difficult to model.
In this paper, we propose a FeedBack Loop Network (FBLNet) which attempts to model the driving experience accumulation procedure.
Under the guidance of the incremental knowledge, our model fuses the CNN feature and Transformer feature that are extracted from the input image to predict driver attention.
arXiv Detail & Related papers (2022-12-05T08:25:09Z) - Pedestrian Trajectory Prediction via Spatial Interaction Transformer
Network [7.150832716115448]
In traffic scenes, when encountering with oncoming people, pedestrians may make sudden turns or stop immediately.
To predict such unpredictable trajectories, we can gain insights into the interaction between pedestrians.
We present a novel generative method named Spatial Interaction Transformer (SIT), which learns the correlation of pedestrian trajectories through attention mechanisms.
arXiv Detail & Related papers (2021-12-13T13:08:04Z) - Early Lane Change Prediction for Automated Driving Systems Using
Multi-Task Attention-based Convolutional Neural Networks [8.60064151720158]
Lane change (LC) is one of the safety-critical manoeuvres in highway driving.
reliably predicting such manoeuvre in advance is critical for the safe and comfortable operation of automated driving systems.
This paper proposes a novel multi-task model to simultaneously estimate the likelihood of LC manoeuvres and the time-to-lane-change.
arXiv Detail & Related papers (2021-09-22T13:59:27Z) - Safety-aware Motion Prediction with Unseen Vehicles for Autonomous
Driving [104.32241082170044]
We study a new task, safety-aware motion prediction with unseen vehicles for autonomous driving.
Unlike the existing trajectory prediction task for seen vehicles, we aim at predicting an occupancy map.
Our approach is the first one that can predict the existence of unseen vehicles in most cases.
arXiv Detail & Related papers (2021-09-03T13:33:33Z) - Divide-and-Conquer for Lane-Aware Diverse Trajectory Prediction [71.97877759413272]
Trajectory prediction is a safety-critical tool for autonomous vehicles to plan and execute actions.
Recent methods have achieved strong performances using Multi-Choice Learning objectives like winner-takes-all (WTA) or best-of-many.
Our work addresses two key challenges in trajectory prediction, learning outputs, and better predictions by imposing constraints using driving knowledge.
arXiv Detail & Related papers (2021-04-16T17:58:56Z) - Deep Structured Reactive Planning [94.92994828905984]
We propose a novel data-driven, reactive planning objective for self-driving vehicles.
We show that our model outperforms a non-reactive variant in successfully completing highly complex maneuvers.
arXiv Detail & Related papers (2021-01-18T01:43:36Z) - The Importance of Prior Knowledge in Precise Multimodal Prediction [71.74884391209955]
Roads have well defined geometries, topologies, and traffic rules.
In this paper we propose to incorporate structured priors as a loss function.
We demonstrate the effectiveness of our approach on real-world self-driving datasets.
arXiv Detail & Related papers (2020-06-04T03:56:11Z) - PiP: Planning-informed Trajectory Prediction for Autonomous Driving [69.41885900996589]
We propose planning-informed trajectory prediction (PiP) to tackle the prediction problem in the multi-agent setting.
By informing the prediction process with the planning of ego vehicle, our method achieves the state-of-the-art performance of multi-agent forecasting on highway datasets.
arXiv Detail & Related papers (2020-03-25T16:09:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.