Optimal quantum state tomography with local informationally complete measurements
- URL: http://arxiv.org/abs/2408.07115v1
- Date: Tue, 13 Aug 2024 17:58:02 GMT
- Title: Optimal quantum state tomography with local informationally complete measurements
- Authors: Casey Jameson, Zhen Qin, Alireza Goldar, Michael B. Wakin, Zhihui Zhu, Zhexuan Gong,
- Abstract summary: We study whether a general MPS/MPDO state can be recovered with bounded errors using only a number of state copies in the number of qubits.
We provide a positive answer for a variety of common many-body quantum states, including typical short-range entangled states, random MPS/MPDO states, and thermal states of one-dimensional Hamiltonians.
- Score: 25.33379738135298
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum state tomography (QST) remains the gold standard for benchmarking and verification of near-term quantum devices. While QST for a generic quantum many-body state requires an exponentially large amount of resources, most physical quantum states are structured and can often be represented by a much smaller number of parameters, making efficient QST potentially possible. A prominent example is a matrix product state (MPS) or a matrix product density operator (MPDO), which is believed to represent most physical states generated by one-dimensional (1D) quantum devices. We study whether a general MPS/MPDO state can be recovered with bounded errors using only a number of state copies polynomial in the number of qubits, which is necessary for efficient QST. To make this question practically interesting, we assume only local measurements of qubits directly on the target state. By using a local symmetric informationally complete positive operator-valued measurement (SIC-POVM), we provide a positive answer to the above question for a variety of common many-body quantum states, including typical short-range entangled states, random MPS/MPDO states, and thermal states of one-dimensional Hamiltonians. In addition, we also provide an affirmative no answer for certain long-range entangled states such as a family of generalized GHZ states, but with the exception of target states that are known to have real-valued wavefunctions. Our answers are supported by a near-perfect agreement between an efficient calculation of the Cramer-Rao bound that rigorously bounds the sample complexity and numerical optimization results using a machine learning assisted maximal likelihood estimation (MLE) algorithm. This agreement also leads to an optimal QST protocol using local SIC-POVM that can be practically implemented on current quantum hardware and is highly efficient for most 1D physical states.
Related papers
- Sample-Optimal Quantum State Tomography for Structured Quantum States in One Dimension [25.333797381352973]
We study whether the number of state copies can saturate the information theoretic bound (i.e., $O(n)$) using physical quantum measurements.
We propose a projected gradient descent (PGD) algorithm to solve the constrained least-squares problem and show that it can efficiently find an estimate with bounded recovery error.
arXiv Detail & Related papers (2024-10-03T15:26:26Z) - Absolute dimensionality of quantum ensembles [41.94295877935867]
The dimension of a quantum state is traditionally seen as the number of superposed distinguishable states in a given basis.
We propose an absolute, i.e.basis-independent, notion of dimensionality for ensembles of quantum states.
arXiv Detail & Related papers (2024-09-03T09:54:15Z) - Mixed-Dimensional Qudit State Preparation Using Edge-Weighted Decision Diagrams [3.393749500700096]
Quantum computers have the potential to solve intractable problems.
One key element to exploiting this potential is the capability to efficiently prepare quantum states for multi-valued, or qudit, systems.
In this paper, we investigate quantum state preparation with a focus on mixed-dimensional systems.
arXiv Detail & Related papers (2024-06-05T18:00:01Z) - Almost device-independent certification of GME states with minimal
measurements [41.94295877935867]
Device-independent certification of quantum states allows the characterization of quantum states present inside a device.
A major problem in this regard is to certify quantum states using minimal resources.
We consider the multipartite quantum steering scenario with an arbitrary number of parties but only one of which is trusted in the sense that the measurements performed by the trusted party are known.
arXiv Detail & Related papers (2024-02-28T17:54:55Z) - Measurement-Device-Independent Detection of Beyond-Quantum State [53.64687146666141]
We propose a measurement-device-independent (MDI) test for beyond-quantum state detection.
We discuss the importance of tomographic completeness of the input sets to the detection.
arXiv Detail & Related papers (2023-12-11T06:40:13Z) - Quantum State Tomography for Matrix Product Density Operators [28.799576051288888]
Reconstruction of quantum states from experimental measurements is crucial for the verification and benchmarking of quantum devices.
Many physical quantum states, such as states generated by noisy, intermediate-scale quantum computers, are usually structured.
We establish theoretical guarantees for the stable recovery of MPOs using tools from compressive sensing and the theory of empirical processes.
arXiv Detail & Related papers (2023-06-15T18:23:55Z) - Quantum process tomography of continuous-variable gates using coherent
states [49.299443295581064]
We demonstrate the use of coherent-state quantum process tomography (csQPT) for a bosonic-mode superconducting circuit.
We show results for this method by characterizing a logical quantum gate constructed using displacement and SNAP operations on an encoded qubit.
arXiv Detail & Related papers (2023-03-02T18:08:08Z) - Sparse random Hamiltonians are quantumly easy [105.6788971265845]
A candidate application for quantum computers is to simulate the low-temperature properties of quantum systems.
This paper shows that, for most random Hamiltonians, the maximally mixed state is a sufficiently good trial state.
Phase estimation efficiently prepares states with energy arbitrarily close to the ground energy.
arXiv Detail & Related papers (2023-02-07T10:57:36Z) - Pure state tomography with parallel unentangled measurements [0.9746724603067647]
We focus on the QST of a pure quantum state using parallel unentangled measurements.
We propose two sets of quantum measurements that one can make on a pure state as well as the algorithms that use the measurements outcomes in order to identify the state.
arXiv Detail & Related papers (2022-08-08T09:49:55Z) - Experimental single-setting quantum state tomography [2.510118175122992]
Quantum computers solve ever more complex tasks using steadily growing system sizes.
Gold-standard is quantum state tomography (QST), capable of fully reconstructing a quantum state without prior knowledge.
We demonstrate a scalable and practical QST approach that uses a single measurement setting.
arXiv Detail & Related papers (2022-05-31T18:00:04Z) - Quantum Gram-Schmidt Processes and Their Application to Efficient State
Read-out for Quantum Algorithms [87.04438831673063]
We present an efficient read-out protocol that yields the classical vector form of the generated state.
Our protocol suits the case that the output state lies in the row space of the input matrix.
One of our technical tools is an efficient quantum algorithm for performing the Gram-Schmidt orthonormal procedure.
arXiv Detail & Related papers (2020-04-14T11:05:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.